939 resultados para Phenotypic Maturation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autophagy is a highly conserved cellular process responsible for the degradation of long-lived proteins and organelles. Autophagy occurs at low levels under normal conditions, but it is enhanced in response to stress, e.g. nutrient deprivation, hypoxia, mitochondrial dysfunction and infection. "Tissue" transglutaminase (TG2) accumulates, both in vivo and in vitro, to high levels in cells under stressful conditions. Therefore, in this study, we investigated whether TG2 could also play a role in the autophagic process. To this end, we used TG2 knockout mice and cell lines in which the enzyme was either absent or overexpressed. The ablation of TG2 protein both in vivo and in vitro, resulted in an evident accumulation of microtubule-associated protein 1 light chain 3 cleaved isoform II (LC3 II) on pre-autophagic vesicles, suggesting a marked induction of autophagy. By contrast, the formation of the acidic vesicular organelles in the same cells was very limited, indicating an impairment of the final maturation of autophagolysosomes. In fact, the treatment of TG2 proficient cells with NH4Cl, to inhibit lysosomal activity, led to a marked accumulation of LC3 II and damaged mitochondria similar to what we observed in TG2-deficient cells. These data indicate a role for TG2-mediated post-translational modifications of proteins in the maturation of autophagosomes accompanied by the accumulation of many damaged mitochondria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed field gel electrophoresis of 82 intestinal spirochaete isolates showed specific differentiation of Serpulina pilosicoli and Serpulina hyodysenteriae although considerable heterogeneity was observed, especially amongst S. pilosicoli isolates. In several cases genotypically similar isolates originated from different animals suggesting that cross-species transmission may have occurred. The Caco-2 and Caco-21HT29 cell models have been proposed as potentially realistic models of intestinal infection. Quantitation of adhesion to the cells showed isolate 3 82/91 (from a bacteraemia) to adhere at significantly greater numbers than any other isolate tested. This isolate produced a PFGE profile which differed from other S. pilosicoli isolates and so would be of interest for further study. Comparison of bacteraemic and other S. pilosicoli isolates suggested that bacteraemic isolates were not more specifically adapted for adhesion to, or invasion of the epithelial cell layer than other S. pilosicoli isolates. Genotypically similar isolates from differing animal origins adhered to the Caco-2 model at similar levels. Generation of a random genomic library of S. pilosicoli and screening with species specific monoclonal antibody has enabled the identification of a gene sequence encoding a protein which showed significant homology with an ancestral form of the enzyme pyruvate oxidoreductase. Immunoscreening with polyclonal serum identified the sequences of two gene clusters and a probable arylsulphatase. One gene cluster represented a ribosomal gene cluster which has a similar molecular arrangement to Borrelia burgdorjeri, Treponema pallidum and Thermatoga maritima. The other gene cluster contained an ABC transporter protein, sorbitol dehydrogenase and phosphomannose isomerase. An ELISA type assay was used to demonstrate that isolates of S. pilosicoli could adhere to components of the extracellular matrix such as collagen (type 1), fibronectin, laminin, and porcine gastric mucin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term "pharmacogenetics" has been defined as the scientific study of inherited factors that affect the human drug response. Many pharmacogenetie studies have been published since 1995 and have focussed on the principal enzyme family involved in drug metabolism, the cytochrome P450 family, particularly cytochrome P4502C9 and 2C19. In order to investigate the pharmacogenetic aspect of pharmacotherapy, the relevant studies describing the association of pharmacogenetic factor(s) in drug responses must be retrieved from existing literature using a systematic review approach. In addition, the estimation of variant allele prevalence for the gene under study between different ethnic populations is important for pharmacogenetic studies. In this thesis, the prevalence of CYP2C9/2C19 alleles between different ethnicities has been estimated through meta-analysis and the population genetic principle. The clinical outcome of CYP2C9/2C19 allelic variation on the pharmacotherapy of epilepsy has been investigated; although many new antiepileptic drugs have been launched into the market, carbamazepine, phenobarbital and phenytoin are still the major agents in the pharmacotherapy of epilepsy. Therefore, phenytoin was chosen as a model AED and the effect of CYP2C9/2C19 genetic polymorphism on phenytoin metabolism was further examined.An estimation of the allele prevalence was undertaken for three CYP2C9/2C19 alleles respectively using a meta-analysis of studies that fit the Hardy-Weinberg equilibrium. The prevalence of CYP2C9*1 is approximately 81%, 96%, 97% and 94% in Caucasian, Chinese, Japanese, African populations respectively; the pooled prevalence of CYP2C19*1 is about 86%, 57%, 58% and 85% in these ethnic populations respectively. However, the studies of association between CYP2C9/2C19 polymorphism and phenytoin metabolism failed to achieve any qualitative or quantitative conclusion. Therefore, mephenytoin metabolism was examined as a probe drug for association between CYP2C19 polymorphism and mephenytoin metabolic ratio. Similarly, analysis of association between CYP2C9 polymorphism and warfarin dose requirement was undertaken.It was confirmed that subjects carrying two mutated CYP2C19 alleles have higher S/R mephenytoin ratio due to deficient CYP2C19 enzyme activity. The studies of warfarin and CYP2C9 polymorphism did not provide a conclusive result due to poor comparability between studies.The genetic polymorphism of drug metabolism enzymes has been studied extensively, however other genetic factors, such as multiple drug resistance genes (MDR) and genes encoding ion channels, which may contribute to variability in function of drug transporters and targets, require more attention in future pharmacogenetic studies of antiepileptic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of endogenous rhythms in the photoperiodic control of the annual reproduction cycle in female rainbow trout was investigated. The effect of photoperiod regimes on the different stages of maturation was assessed by recording the timing of ovulation and from quantifying associated changes in serum oestradiol-17,testosterone and total calcium. Maintained under constant 6L:18D and constant temperature for up to four years, rainbow trout exhibited an endogenous rhythm of maturation with a periodicity of approximately one year. This rhythm of maturation appears to be driven by an autonomous circannual oscillator or clock which can be dissociated from the neuroendocrine mechanisms controlling gonadal maturation. Under conditions of constant 18L:6D or LL the periodicity of the maturation rhythm was 5.5-6 months; it is suggested that this periodicity may be caused by a splitting or uncoupling of at least two circannual clocks involved in the control of maturation. Abrupt changes in the length of the photoperiod act as a zeitgeber to entrain the endogenous rhythm of maturation. Whether the timing of maturation is advanced or delayed depends primarily on the direction of the change in photoperiod and its timing in relation to the phase of the rhythm, with the magnitude of the alteration in photoperiod having only a supplementary effect. The effect of specific changes in photoperiod on the entrainment of the maturation cycle can be described in terms of a phase-response curve. Photic information is transduced, probably by the pineal gland, into a daily rhythm of melatonin; exposure of rainbow trout to skeleton and resonance photoperiod regimes indicated that daylength measurement is effected by endogenous circadian clock(s) rather than by hour-glass mechanisms. A gating mechanism is closely associated with the circannual clock which determines the timing of onset of maturation in virgin female rainbow trout, only allowing fish that have attained a threshold stage of development to undergo gonadal maturation. Collectively the results support the hypothesis that the female rainbow trout exhibits an endogenous circannual rhythm of maturation which can be entrained by changes in photoperiod.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective-We previously demonstrated that upregulation of intermediate-conductance Ca2+ -activated K+ channels (KCa 3.1) is necessary for mitogen-induced phenotypic modulation in isolated porcine coronary smooth muscle cells (SMCs). The objective of the present study was to determine the role of KCa3.1 in the regulation of coronary SMC phenotypic modulation in vivo using a swine model of postangioplasty restenosis. Methods and Results-Balloon angioplasty was performed on coronary arteries of swine using either noncoated or balloons coated with the specific KCa3.1 blocker TRAM-34. Expression of KCa3.1, c-jun, c-fos, repressor element-1 silencing transcription factor (REST), smooth muscle myosin heavy chain (SMMHC), and myocardin was measured using qRT-PCR in isolated medial cells 2 hours and 2 days postangioplasty. KCa3.1, c-jun, and c-fos mRNA levels were increased 2 hours postangioplasty, whereas REST expression decreased. SMMHC expression was unchanged at 2 hours, but decreased 2 days postangioplasty. Use of TRAM-34 coated balloons prevented KCa3.1 upregulation and REST downregulation at 2 hours, SMMHC and myocardin downregulation at 2 days, and attenuated subsequent restenosis 14 and 28 days postangioplasty. Immunohistochemical analysis demonstrated corresponding changes at the protein level. Conclusion-Blockade of KCa3.1 by delivery of TRAM-34 via balloon catheter prevented smooth muscle phenotypic modulation and limited subsequent restenosis. © 2008 American Heart Association, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework. Results. We investigate the effect of microscopic mutations on the phenotype of RNA molecules during their in silico evolution and adaptation. We calculate the distribution of the effects of mutations on fitness, the relative fractions of beneficial and deleterious mutations and the corresponding selection coefficients for populations evolving under different mutation rates. Three different situations are explored: the mutation-selection equilibrium (optimized population) in three different fitness landscapes, the dynamics during adaptation towards a goal structure (adapting population), and the behavior under periodic population bottlenecks (perturbed population). Conclusions. The ratio between the number of beneficial and deleterious mutations experienced by a population of RNA sequences increases with the value of the mutation rate µ at which evolution proceeds. In contrast, the selective value of mutations remains almost constant, independent of µ, indicating that adaptation occurs through an increase in the amount of beneficial mutations, with little variations in the average effect they have on fitness. Statistical analyses of the distribution of fitness effects reveal that small effects, either beneficial or deleterious, are well described by a Pareto distribution. These results are robust under changes in the fitness landscape, remarkably when, in addition to selecting a target secondary structure, specific subsequences or low-energy folds are required. A population perturbed by bottlenecks behaves similarly to an adapting population, struggling to return to the optimized state. Whether it can survive in the long run or whether it goes extinct depends critically on the length of the time interval between bottlenecks. © 2010 Stich et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leukemia inhibitory factor (LIF) and its receptor (LIFR) are "twins" of Oncostatin M (OSM) and OSMR, respectively, likely having arisen through gene duplications. We compared their effects in a bone nodule-forming model of in vitro osteogenesis, rat calvaria (RC) cell cultures. Using a dominant-negative LIF mutant (hLIF-05), we showed that in RC cell cultures mouse OSM (mOSM) activates exclusively glycoprotein 130 (gp130)/OSMR. In treatments starting at early nodule formation stage, LIF, mOSM, IL-11, and IL-6 + sIL-6R inhibit bone nodule formation, that is, osteoprogenitor differentiation. Treatment with mOSM, and no other cytokine of the family, in early cultures (day 1-3 or 1-4) increases bone colony numbers. hLIF-05 also dose dependently stimulates bone nodule formation, confirming the inhibitory action of gp130/LIFR on osteogenesis. In pulse treatments at successive stages of bone nodule formation and maturation, LIF blocks osteocalcin (OCN) expression by differentiated osteoblasts, but has no effect on bonesialoprotein (BSP) expression. Mouse OSM inhibits OCN and BSP expression in preconfluent cultures with no or progressively reduced effects at later stages, reflecting the disruption of early nodules, possibly due to the strong apoptotic action of mOSM in RC cell cultures. In summary, LIFR and OSMR display differential effects on differentiation and phenotypic expression of osteogenic cells, most likely through different signal transduction pathways. In particular, gp130/OSMR is the only receptor complex of the family to stimulate osteoprogenitor differentiation in the RC cell culture model. © 2005 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early embryonic development is known to be susceptible to maternal undernutrition, leading to a disease-related postnatal phenotype. To determine whether this sensitivity extended into oocyte development, we examined the effect of maternal normal protein diet (18% casein; NPD) or isocaloric low protein diet (9% casein; LPD) restricted to one ovulatory cycle (3.5 days) prior to natural mating in female MF-1 mice. After mating, all females received NPD for the remainder of gestation and all offspring were litter size adjusted and fed standard chow. No difference in gestation length, litter size, sex ratio or postnatal growth was observed between treatments. Maternal LPD did, however, induce abnormal anxiety-related behaviour in open field activities in male and female offspring (P <0.05). Maternal LPD offspring also exhibited elevated systolic blood pressure (SBP) in males at 9 and 15 weeks and in both sexes at 21 weeks (P <0.05). Male LPD offspring hypertension was accompanied by attenuated arterial responsiveness in vitro to vasodilators acetylcholine and isoprenaline (P <0.05). LPD female offspring adult kidneys were also smaller, but had increased nephron numbers (P <0.05). Moreover, the relationship between SBP and kidney or heart size or nephron number was altered by diet treatment (P <0.05). These data demonstrate the sensitivity of mouse maturing oocytes in vivo to maternal protein undernutrition and identify both behavioural and cardiovascular postnatal outcomes, indicative of adult disease. These outcomes probably derive from a direct effect of protein restriction, although indirect stress mechanisms may also be contributory. Similar and distinct postnatal outcomes were observed here compared with maternal LPD treatment during post-fertilization preimplantation development which may reflect the relative contribution of the paternal genome. © Journal compilation © 2008 The Physiological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA) is likely to exert selective pressure on natural populations. Our ability to predict which marine species will adapt to OA, and what underlies this adaptive potential, are of high conservation and resource management priority. Using a naturally low pH vent site in the Mediterranean Sea (Castello Aragonese, Ischia) mirroring projected future OA conditions, we carried out a reciprocal transplant experiment to investigate the relative importance of phenotypic plasticity and local adaptation in two populations of the sessile, calcifying polychaete /Simplaria /sp. (Annelida, Serpulidae, Spirorbinae): one residing in low pH and the other from a nearby ambient (i.e. high) pH site. We measured a suite of fitness related traits (i.e. survival, reproductive output, maturation, population growth) and tube growth rates in laboratory-bred F2 generation individuals from both populations reciprocally transplanted back into both ambient and low pH /in situ/ habitats. Both populations showed lower expression in all traits, but increased tube growth rates, when exposed to low pH compared to high pH conditions, regardless of their site of origin suggesting that local adaptation to low pH conditions has not occurred. We also found comparable levels of plasticity in the two populations investigated, suggesting no influence of long-term exposure to low pH on the ability of populations to adjust their phenotype. Despite high variation in trait values among sites and the relatively extreme conditions at sites close to the vents (pH < 7.36), response trends were consistent across traits. Hence, our data suggest that, for /Simplaria /and possibly other calcifiers, neither local adaptations nor sufficient phenotypic plasticity levels appear to suffice in order to compensate for the negative impacts of OA on long-term survival. Our work also underlines the utility of field experiments in natural environments subjected to high level of /p/CO_2 for elucidating the potential for adaptation to future scenarios of OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification is predicted to have widespread implications for marine bivalve mollusks. While our understanding of its impact on their physiological and behavioral responses is increasing, little is known about their reproductive responses under future scenarios of anthropogenic climate change. In this study, we examined the physiological energetics of the Manila clam Ruditapes philippinarum exposed to CO2-induced seawater acidification during gonadal maturation. Three recirculating systems filled with 600 L of seawater were manipulated to three pH levels (8.0, 7.7, and 7.4) corresponding to control and projected pH levels for 2100 and 2300. In each system, temperature was gradually increased ca. 0.3 °C per day from 10 to 20 °C for 30 days and maintained at 20 °C for the following 40 days. Irrespective of seawater pH levels, clearance rate (CR), respiration rate (RR), ammonia excretion rate (ER), and scope for growth (SFG) increased after a 30-day stepwise warming protocol. When seawater pH was reduced, CR, ratio of oxygen to nitrogen, and SFG significantly decreased concurrently, whereas ammonia ER increased. RR was virtually unaffected under acidified conditions. Neither temperature nor acidification showed a significant effect on food absorption efficiency. Our findings indicate that energy is allocated away from reproduction under reduced seawater pH, potentially resulting in an impaired or suppressed reproductive function. This interpretation is based on the fact that spawning was induced in only 56% of the clams grown at pH 7.4. Seawater acidification can therefore potentially impair the physiological energetics and spawning capacity of R. philippinarum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine phytoplankton can evolve rapidly when confronted with aspects of climate change because of their large population sizes and fast generation times. Despite this, the importance of environment fluctuations, a key feature of climate change, has received little attention-selection experiments with marine phytoplankton are usually carried out in stable environments and use single or few representatives of a species, genus or functional group. Here we investigate whether and by how much environmental fluctuations contribute to changes in ecologically important phytoplankton traits such as C:N ratios and cell size, and test the variability of changes in these traits within the globally distributed species Ostreococcus. We have evolved 16 physiologically distinct lineages of Ostreococcus at stable high CO2 (1031±87?µatm CO2, SH) and fluctuating high CO2 (1012±244?µatm CO2, FH) for 400 generations. We find that although both fluctuation and high CO2 drive evolution, FH-evolved lineages are smaller, have reduced C:N ratios and respond more strongly to further increases in CO2 than do SH-evolved lineages. This indicates that environmental fluctuations are an important factor to consider when predicting how the characteristics of future phytoplankton populations will have an impact on biogeochemical cycles and higher trophic levels in marine food webs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements We thank the Iain Fraser Flow Cytometry Centre and the Medical Research Facility of the University of Aberdeen. We are grateful to Drs West, Zaru, and Davidson (University of Dundee) for the scientific discussion and technical assistance. Wethank Derek Mitchell (University of Dundee) for aiding with the quantification of focal contacts. Funding This work was supported by Saving Sight in Grampian and the Development Trust of the UoA (both to J.V.F.). Work on this project was partly funded by project grants from British Heart Foundation and European Foundation for the Study of Diabetes/Lilly diabetes programme grant (to M.D.).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements We thank the Iain Fraser Flow Cytometry Centre and the Medical Research Facility of the University of Aberdeen. We are grateful to Drs West, Zaru, and Davidson (University of Dundee) for the scientific discussion and technical assistance. Wethank Derek Mitchell (University of Dundee) for aiding with the quantification of focal contacts. Funding This work was supported by Saving Sight in Grampian and the Development Trust of the UoA (both to J.V.F.). Work on this project was partly funded by project grants from British Heart Foundation and European Foundation for the Study of Diabetes/Lilly diabetes programme grant (to M.D.).