857 resultados para Phase-ii Trial
Resumo:
Part I
Present experimental data on nucleon-antinucleon scattering allow a study of the possibility of a phase transition in a nucleon-antinucleon gas at high temperature. Estimates can be made of the general behavior of the elastic phase shifts without resorting to theoretical derivation. A phase transition which separates nucleons from antinucleons is found at about 280 MeV in the approximation of the second virial coefficient to the free energy of the gas.
Part II
The parton model is used to derive scaling laws for the hadrons observed in deep inelastic electron-nucleon scattering which lie in the fragmentation region of the virtual photon. Scaling relations are obtained in the Bjorken and Regge regions. It is proposed that the distribution functions become independent of both q2 and ν where the Bjorken and Regge regions overlap. The quark density functions are discussed in the limit x→1 for the nucleon octet and the pseudoscalar mesons. Under certain plausible assumptions it is found that only one or two quarks of the six types of quarks and antiquarks have an appreciable density function in the limit x→1. This has implications for the quark fragmentation functions near the large momentum boundary of their fragmentation region. These results are used to propose a method of measuring the proton and neutron quark density functions for all x by making measurements on inclusively produced hadrons in electroproduction only. Implications are also discussed for the hadrons produced in electron-positron annihilation.
Resumo:
Although metalorganic vapor phase epitaxy (MOVPE) is generally regarded as a non-equillibrium process, it can be assumed that a chemical equilibrium is established at the vapor-solid interface in the diffusion limited region of growth rate. In this paper, an equilibrium model was proposed to calculate the relation between vapor and solid compositions for II-VI ternary alloys. Metastable alloys in the miscibility gap may not be obtained when the growth temperature is lower than the critical temperature of the system. The influence of growth temperature, reactor pressure, input VI/II ratio, and input composition of group VI reactants has been calculated for ZnSSe, ZnSeTe and ZnSTe. The results are compared with experimental data for the ZnSSe and ZnSTe systems.
Resumo:
The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.
Resumo:
A sensitive electrochemiluminescent detection scheme by solid-phase extraction at Ru(bpy)(3)(2+)-modified ceramic carbon electrodes (CCEs) was developed. The as-prepared Ru(bpy)(3)(2+)-modified CCEs show much better long-term stability than other Nafion-based Ru(bpy)(3)(2+)-modified electrodes and enjoy the inherent advantages of CCEs. The log-log calibration plot for dioxopromethazine is linear from 1.0 x 10(-9) to 1.0 x 10(-4) mol L-1 using the new detection scheme. The detection limit is 6.6 x 10(-10) mol L-1 at a signal-to-noise ratio of 3. The new scheme improves the sensitivity by similar to 3 orders of magnitude, which is the most sensitive Ru(bpy)(3)(2+) ECL method. The scheme allows the detection of dioxopromethazine in a urine sample within 3 min. Since Ru(bpy)(3)(2+) ECL is a powerful technique for determination of numerous amine-containing substances, the new detection scheme holds great promise in measurement of free concentrations, investigation of protein-drug interactions and DNA-drug interactions, pharmaceutical analysis, and so on.
Resumo:
Hydrotalcite-like compounds (HTLcs): CoMAlCO3-HTLcs (M=Cu2+, Ni2+, Mn2+, Cr3+, Fe3+), were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs and their calcined products were studied in the p-cresol oxidation, and the effects of the temperature of HTLcs calcination, the ratio of Co/Cu, different promoters, reaction temperatures and reaction times on reaction activities were investigated. It has been found that calcined HTLcs have higher activity than uncalcined samples and mechanical mixed oxides in this reaction. The best yield was obtained from the CoCuAlCO3-HTLc (Co/Cu/Al=3:1:1) calcined at 450 degrees C. A tentative reaction mechanism was also proposed. (C) 1998 Elsevier Science B.V.
Resumo:
The chemical reactions coupled with the phase transfer of Co(Ⅱ) catalyzed by 2,2′ -bipyridine across the water/nitrobenzene interface have been observed by using cyclic voltammetry (CV). Coupled chemical reactions both in the organic phase or in the aqueus phase influence the CV behavior of successive complex phase transfer obviously and an irreversible phenomenon similar to that existed at the metal electrode/electrolyte solution interface was observed. For different complexes, the phase transfer mechanism...
Resumo:
Duchenne muscular dystrophy is caused by dystrophin deficiency and muscle deterioration and preferentially affects boys. Antisense-oligonucleotide-induced exon skipping allows synthesis of partially functional dystrophin. We investigated the efficacy and safety of drisapersen, a 2'-O-methyl-phosphorothioate antisense oligonucleotide, given for 48 weeks.
Resumo:
The equilibrium polymerization of sulfur is investigated by Monte Carlo simulations. The potential energy model is based on density functional results for the cohesive energy, structural, and vibrational properties as well as reactivity of sulfur rings and chains [Part I, J. Chem. Phys. 118, 9257 (2003)]. Liquid samples of 2048 atoms are simulated at temperatures 450less than or equal toTless than or equal to850 K and P=0 starting from monodisperse S-8 molecular compositions. Thermally activated bond breaking processes lead to an equilibrium population of unsaturated atoms that can change the local pattern of covalent bonds and allow the system to approach equilibrium. The concentration of unsaturated atoms and the kinetics of bond interchanges is determined by the energy DeltaE(b) required to break a covalent bond. Equilibrium with respect to the bond distribution is achieved for 15less than or equal toDeltaE(b)less than or equal to21 kcal/mol over a wide temperature range (Tgreater than or equal to450 K), within which polymerization occurs readily, with entropy from the bond distribution overcompensating the increase in enthalpy. There is a maximum in the polymerized fraction at temperature T-max that depends on DeltaE(b). This fraction decreases at higher temperature because broken bonds and short chains proliferate and, for Tless than or equal toT(max), because entropy is less important than enthalpy. The molecular size distribution is described well by a Zimm-Schulz function, plus an isolated peak for S-8. Large molecules are almost exclusively open chains. Rings tend to have fewer than 24 atoms, and only S-8 is present in significant concentrations at all T. The T dependence of the density and the dependence of polymerization fraction and degree on DeltaE(b) give estimates of the polymerization temperature T-f=450+/-20 K. (C) 2003 American Institute of Physics.
Resumo:
Background: When cure is impossible, cancer treatment should focus on both length and quality of life. Maximisation of time without toxic effects could be one effective strategy to achieve both of these goals. The COIN trial assessed preplanned treatment holidays in advanced colorectal cancer to achieve this aim. Methods: COIN was a randomised controlled trial in patients with previously untreated advanced colorectal cancer. Patients received either continuous oxaliplatin and fluoropyrimidine combination (arm A), continuous chemotherapy plus cetuximab (arm B), or intermittent (arm C) chemotherapy. In arms A and B, treatment continued until development of progressive disease, cumulative toxic effects, or the patient chose to stop. In arm C, patients who had not progressed at their 12-week scan started a chemotherapy-free interval until evidence of disease progression, when the same treatment was restarted. Randomisation was done centrally (via telephone) by the MRC Clinical Trials Unit using minimisation. Treatment allocation was not masked. The comparison of arms A and B is described in a companion paper. Here, we compare arms A and C, with the primary objective of establishing whether overall survival on intermittent therapy was non-inferior to that on continuous therapy, with a predefined non-inferiority boundary of 1·162. Intention-to-treat (ITT) and per-protocol analyses were done. This trial is registered, ISRCTN27286448. Findings: 1630 patients were randomly assigned to treatment groups (815 to continuous and 815 to intermittent therapy). Median survival in the ITT population (n=815 in both groups) was 15·8 months (IQR 9·4—26·1) in arm A and 14·4 months (8·0—24·7) in arm C (hazard ratio [HR] 1·084, 80% CI 1·008—1·165). In the per-protocol population (arm A, n=467; arm C, n=511), median survival was 19·6 months (13·0—28·1) in arm A and 18·0 months (12·1—29·3) in arm C (HR 1·087, 0·986—1·198). The upper limits of CIs for HRs in both analyses were greater than the predefined non-inferiority boundary. Preplanned subgroup analyses in the per-protocol population showed that a raised baseline platelet count, defined as 400 000 per µL or higher (271 [28%] of 978 patients), was associated with poor survival with intermittent chemotherapy: the HR for comparison of arm C and arm A in patients with a normal platelet count was 0·96 (95% CI 0·80—1·15, p=0·66), versus 1·54 (1·17—2·03, p=0·0018) in patients with a raised platelet count (p=0·0027 for interaction). In the per-protocol population, more patients on continuous than on intermittent treatment had grade 3 or worse haematological toxic effects (72 [15%] vs 60 [12%]), whereas nausea and vomiting were more common on intermittent treatment (11 [2%] vs 43 [8%]). Grade 3 or worse peripheral neuropathy (126 [27%] vs 25 [5%]) and hand—foot syndrome (21 [4%] vs 15 [3%]) were more frequent on continuous than on intermittent treatment. Interpretation: Although this trial did not show non-inferiority of intermittent compared with continuous chemotherapy for advanced colorectal cancer in terms of overall survival, chemotherapy-free intervals remain a treatment option for some patients with advanced colorectal cancer, offering reduced time on chemotherapy, reduced cumulative toxic effects, and improved quality of life. Subgroup analyses suggest that patients with normal baseline platelet counts could gain the benefits of intermittent chemotherapy without detriment in survival, whereas those with raised baseline platelet counts have impaired survival and quality of life with intermittent chemotherapy and should not receive a treatment break.