921 resultados para Pharmaceutics and Drug Design
Resumo:
Human C5a is a plasma protein with potent chemoattractant and pro-inflammatory properties, and its overexpression correlates with severity of inflammatory diseases. C5a binds to its G protein-coupled receptor (C5aR) on polymorphonuclear leukocytes (PMNLs) through a high-affinity helical bundle and a low-affinity C terminus, the latter being solely responsible for receptor activation. Potent and selective C5a antagonists are predicted to be effective anti-inflammatory drugs, but no pharmacophore for small molecule antagonists has yet been developed, and it would significantly aid drug design. We have hypothesized that a turn conformation is important for activity of the C terminus of C5a and herein report small cyclic peptides that are stable turn mimics with potent antagonism at C5aR on human PMNLs. A comparison of solution structures for the C terminus of C5a, small acyclic peptide ligands, and cyclic antagonists supports the importance of a turn for receptor binding. Competition between a cyclic antagonist and either C5a or an acyclic agonist for C5aR on PMNLs supports a common or overlapping binding site on the C5aR. Structure-activity relationships for 60 cyclic analogs were evaluated by competitive radioligand binding with C5a (affinity) and myeloperoxidase release (antagonist potency) from human PMNLs, with 20 compounds having high antagonist potencies (IC50, 20 nM(-1) muM). Computer modeling comparisons reveal that potent antagonists share a common cyclic backbone shape, with affinity-determining side chains of defined volume projecting from the cyclic scaffold. These results define a new pharmacophore for C5a antagonist development and advance our understanding of ligand recognition and receptor activation of this G protein-coupled receptor.
Resumo:
West Nile Virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection causes severe neurological disease and fatalities in both human and animal hosts. The West Nile viral protease (NS2B-NS3) is essential for post-translational processing in host-infected cells of a viral polypeptide precursor into structural and functional viral proteins, and its inhibition could represent a potential treatment for viral infections. This article describes the design, expression, and enzymatic characterization of a catalytically active recombinant WNV protease, consisting of a 40-residue component of cofactor NS2B tethered via a noncleavable nonapeptide (G(4)SG(4)) to the N-terminal 184 residues of NS3. A chromogenic assay using synthetic para-nitroanilide (pNA) hexapeptide substrates was used to identify optimal enzyme-processing conditions (pH 9.5, I < 0.1 M, 30% glycerol, 1 mM CHAPS), preferred substrate cleavage sites, and the first competitive inhibitor (Ac-FASGKR- H, IC50 &SIM; 1 μM). A putative three-dimensional structure of WNV protease, created through homology modeling based on the crystal structures of Dengue-2 and Hepatitis C NS3 viral proteases, provides some valuable insights for structure-based design of potent and selective inhibitors of WNV protease.
Resumo:
We outline and evaluate competing explanations of three relationships that have consistently been found between cannabis use and the use of other illicit drugs, namely, ( 1) that cannabis use typically precedes the use of other illicit drugs; and that ( 2) the earlier cannabis is used, and ( 3) the more regularly it is used, the more likely a young person is to use other illicit drugs. We consider three major competing explanations of these patterns: ( 1) that the relationship is due to the fact that there is a shared illicit market for cannabis and other drugs which makes it more likely that other illicit drugs will be used if cannabis is used; ( 2) that they are explained by the characteristics of those who use cannabis; and ( 3) that they reflect a causal relationship in which the pharmacological effects of cannabis on brain function increase the likelihood of using other illicit drugs. These explanations are evaluated in the light of evidence from longitudinal epidemiological studies, simulation studies, discordant twin studies and animal studies. The available evidence indicates that the association reflects in part but is not wholly explained by: ( 1) the selective recruitment to heavy cannabis use of persons with pre-existing traits ( that may be in part genetic) that predispose to the use of a variety of different drugs; ( 2) the affiliation of cannabis users with drug using peers in settings that provide more opportunities to use other illicit drugs at an earlier age; ( 3) supported by socialisation into an illicit drug subculture with favourable attitudes towards the use of other illicit drugs. Animal studies have raised the possibility that regular cannabis use may have pharmacological effects on brain function that increase the likelihood of using other drugs. We conclude with suggestions for the type of research studies that will enable a decision to be made about the relative contributions that social context, individual characteristics, and drug effects make to the relationship between cannabis use and the use of other drugs.
Resumo:
The solution structure of one of the first members of the cyclotide family of macrocyclic peptides to be discovered, circulin B has been determined and compared with that of circulin A and related cyclotides. Cyclotides are mini-proteins derived from plants that have the characteristic features of a head-to-tail cyclised peptide backbone and a knotted arrangement of their three disulfide bonds. First discovered because of their uterotonic or anti-HIV activity, they have also been reported to have activity against a range of Gram positive and Gram negative bacteria as well as fungi. The aim of the current study was to develop structure-activity relationships to rationalise this antimicrobial activity. Comparison of cyclotide structures and activities suggests that the presence and location of cationic residues may be a requirement for activity against Gram negative bacteria. Understanding the topological differences associated with the antimicrobial activity of the cyclotides is of significant interest and potentially may be harnessed for pharmaceutical applications.
Resumo:
Based on a newly established sequencing strategy featured by its efficiency, simplicity, and easy manipulation, the sequences of four novel cyclotides (macrocyclic knotted proteins) isolated from an Australian plant Viola hederaceae were determined. The three-dimensional solution structure of V. hederaceae leaf cyclotide-1 ( vhl-1), a leaf-specific expressed 31-residue cyclotide, has been determined using two-dimensional H-1 NMR spectroscopy. vhl-1 adopts a compact and well defined structure including a distorted triple-stranded β- sheet, a short 310 helical segment and several turns. It is stabilized by three disulfide bonds, which, together with backbone segments, form a cyclic cystine knot motif. The three-disulfide bonds are almost completely buried into the protein core, and the six cysteines contribute only 3.8% to the molecular surface. A pH titration experiment revealed that the folding of vhl-1 shows little pH dependence and allowed the pK(a) of 3.0 for Glu(3) and &SIM; 5.0 for Glu(14) to be determined. Met(7) was found to be oxidized in the native form, consistent with the fact that its side chain protrudes into the solvent, occupying 7.5% of the molecular surface. vhl-1 shows anti-HIV activity with an EC50 value of 0.87 μ m.
Resumo:
A major chemical challenge is the structural mimicry of discontinuous protein surfaces brought into close proximity through polypeptide folding. We report the design, synthesis, and solution structure of a highly functionalized saddle-shaped macrocyclic scaffold, constrained by oxazoles and thiazoles,upporting two short peptide loops projecting orthogonally from the same face of the scaffold. This structural mimetic of two interhelical loops of cytochrome b(562) illustrates a promising approach to structurally mimicking discontinuous loops of proteins.
Resumo:
The flavivirus West Nile virus (WNV) has spread rapidly throughout the world in recent years causing fever, meningitis, encephalitis, and fatalities. Because the viral protease NS2B/NS3 is essential for replication, it is attracting attention as a potential therapeutic target, although there are currently no antiviral inhibitors for any flavivirus. This paper focuses on elucidating interactions between a hexapeptide substrate (Ae-KPGLKR-p-nitroanilide) and residues at S1 and S2 in the active site of WNV protease by comparing the catalytic activities of selected mutant recombinant proteases in vitro. Homology modeling enabled the predictions of key mutations in VWNV NS3 protease at S1 (V115A/F, D129A/ E/N, S135A, Y150A/F, S160A, and S163A) and S2 (N152A) that might influence substrate recognition and catalytic efficiency. Key conclusions are that the substrate P1 Arg strongly interacts with S1 residues Asp-129, Tyr-150, and Ser-163 and, to a lesser extent, Ser-160, and P2 Lys makes an essential interaction with Asn-152 at S2. The inferred substrate-enzyme interactions provide a basis for rational protease inhibitor design and optimization. High sequence conservation within flavivirus proteases means that this study may also be relevant to design of protease inhibitors for other flavivirus proteases.
Resumo:
Virus-like particles (VLPs) are of interest in vaccination, gene therapy and drug delivery, but their potential has yet to be fully realized. This is because existing laboratory processes, when scaled, do not easily give a compositionally and architecturally consistent product. Research suggests that new process routes might ultimately be based on chemical processing by self-assembly, involving the precision manufacture of precursor capsomeres followed by in vitro VLP self-assembly and scale-up to required levels. A synergistic interaction of biomolecular design and bioprocess engineering (i.e. biomolecular engineering) is required if these alternative process routes and, thus, the promise of new VLP products, are to be realized.
Resumo:
Cyclotides are a recently discovered class of proteins that have a characteristic head-to-tail cyclized backbone stabilized by a knotted arrangement of three disulfide bonds. They are exceptionally resistant to chemical, enzymatic and thermal treatments because of their unique structural scaffold. Cyclotides have a range of bio-activities, including uterotonic, anti-HIV, anti-bacterial and cytotoxic activity but their insecticidal properties suggest that their natural physiological role is in plant defense. They are genetically encoded as linear precursors and subsequently processed to produce mature cyclic peptides but the mechanism by which this occurs remains unknown. Currently most cyclotides are obtained via direct extraction from plants in the Rubiaceae and Violaceae families. To facilitate the screening of cyclotides for structure-activity studies and to exploit them in drug design or agricultural applications a convenient route for the synthesis of cyclotides is vital. In this review the current chemical, recombinant and biosynthetic routes to the production of cyclotides are discussed.
Resumo:
Cyclotides are mini-proteins of 28-37 amino acid residues that have the unusual feature of a head-to-tail cyclic backbone surrounding a cystine knot. This molecular architecture gives the cyclotides heightened resistance to thermal, chemical and enzymatic degradation and has prompted investigations into their use as scaffolds in peptide therapeutics. There are now more than 80 reported cyclotide sequences from plants in the families Rubiaceae, Violaceae and Cucurbitaceae, with a wide variety of biological activities observed. However, potentially limiting the development of cyclotide-based therapeutics is a lack of understanding of the mechanism by which these peptides are cyclized in vivo. Until now, no linear versions of cyclotides have been reported, limiting our understanding of the cyclization mechanism. This study reports the discovery of a naturally occurring linear cyclotide, violacin A, from the plant Viola odorata and discusses the implications for in vivo cyclization of peptides. The elucidation of the cDNA clone of violacin A revealed a point mutation that introduces a stop codon, which inhibits the translation of a key Asn residue that is thought to be required for cyclization. The three-dimensional solution structure of violacin A was determined and found to adopt the cystine knot fold of native cyclotides. Enzymatic stability assays on violacin A indicate that despite an increase in the flexibility of the structure relative to cyclic counterparts, the cystine knot preserves the overall stability of the molecule. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Cyclotides are a large family of mini-proteins that have the distinguishing features of a head-to-tail cyclised backbone and a cystine knot formed by six conserved cysteine residues. They are present in plants from the Rubiaceae, Violaceae and Cucurbitaceae families. The unique structural features of the cyclotides make them extremely resistant to chemical, thermal and proteolytic degradation. In this article we review recent Studies from our laboratory that dissect the role of the individual structural elements in defining the stability of cyclotides. The resistance of cyclotides to chemical and proteolytic degradation is in large part due to the cystine knot, whereas the thermal stability is I composite of several features including the cystine knot, the cyclic backbone and the hydrogen bonding network. A range of biological activities of cyclotides is critically dependent oil the presence of the cyclic backbone.
Resumo:
Highly selective N-type voltage-gated calcium (Ca-V) channel inhibitors from cone snail venom (the omega-conotoxins) have emerged as a new class of therapeutics for the treatment of chronic and neuropathic pain. Earlier in 2005, Prialt ( Elan) or synthetic omega-conotoxin MVIIA, was the first omega-conotoxin to be approved by Food and Drug Administration for human use. This review compares the action of three omega-conotoxins, GVIA, MVIIA and CVID, describing their structure-activity relationships and potential as leads for the design of improved N-type therapeutics that are more useful in the treatment of chronic pain.
Resumo:
Cyclotides are a fascinating family of plant-derived peptides characterized by their head-to-tail cyclized backbone and knotted arrangement of three disulfide bonds. This conserved structural architecture, termed the CCK (cyclic cystine knot), is responsible for their exceptional resistance to thermal, chemical and enzymatic degradation. Cyclotides have a variety of biological activities, but their insecticidal activities suggest that their primary function is in plant defence. In the present study, we determined the cyclotide content of the sweet violet Viola odorata, a member of the Violaceae family. We identified 30 cyclotides from the aerial parts and roots of this plant, 13 of which are novel sequences. The new sequences provide information about the natural diversity of cyclotides and the role of particular residues in defining structure and function. As many of the biological activities of cyclotides appear to be associated with membrane interactions, we used haemolytic activity as a marker of bioactivity for a selection of the new cyclotides. The new cyclotides were tested for their ability to resist proteolysis by a range of enzymes and, in common with other cyclotides, were completely resistant to trypsin, pepsin and thermolysin. The results show that while biological activity varies with the sequence, the proteolytic stability of the framework does not, and appears to be an inherent feature of the cyclotide framework. The structure of one of the new cyclotides, cycloviolacin O14, was determined and shown to contain the CCK motif. This study confirms that cyclotides may be regarded as a natural combinatorial template that displays a variety of peptide epitopes most likely targeted to a range of plant pests and pathogens.
Resumo:
West Nile Virus is becoming a widespread pathogen, infecting people on at least four continents with no effective treatment for these infections or many of their associated pathologies. A key enzyme that is essential for viral replication is the viral protease NS2B-NS3, which is highly conserved among all flaviviruses. Using a combination of molecular fitting of substrates to the active site of the crystal structure of NS3,site-directed enzyme and cofactor mutagenesis, and kinetic studies on proteolytic processing of panels of short peptide substrates, we have identified important enzyme-substrate interactions that define substrate specificity for NS3 protease. In addition to better understanding the involvement of S2, S3, and S4 enzyme residues in substrate binding, a residue within cofactor NS2B has been found to strongly influence the preference of flavivirus proteases for lysine or arginine at P2 in substrates. Optimization of tetrapeptide substrates for enhanced protease affinity and processing efficiency has also provided important clues for developing inhibitors of West Nile Virus infection.
Resumo:
Chemotherapy in the last century was characterized by cytotoxic drugs that did not discriminate between cancerous and normal cell types and were consequently accompanied by toxic side effects that were often dose limiting. The ability of differentiating agents to selectively kill cancer cells or transform them to a nonproliferating or normal phenotype could lead to cell- and tissue-specific drugs without the side effects of current cancer chemotherapeutics. This may be possible for a new generation of histone deacetylase inhibitors derived from amino acids. Structure-activity relationships are now reported for 43 compounds derived from 2-aminosuberic acid that kill a range of cancer cells, 26 being potent cytotoxins against MM96L melanoma cells (IC50 20 nM-1 mu M), while 17 were between 5- and 60-fold more selective in killing MM96L melanoma cells versus normal (neonatal foreskin fibroblasts, NFF) cells. This represents a 10- to 100-fold increase in potency and up to a 10-fold higher selectivity over previously reported compounds derived from cysteine (J. Med. Chem. 2004, 47, 2984). Selectivity is also an underestimate, because the normal cells, NFF, are rarely all killed by the drugs that also induce selective blockade of the cell cycle for normal but not cancer cells. Selected compounds were tested against a panel of human cancer cell lines (melanomas, prostate, breast, ovarian, cervical, lung, and colon) and found to be both selective and potent cytotoxins (IC50 20 nM-1 mu M). Compounds in this class typically inhibit human histone deacetylases, as evidenced by hyperacetylation of histones in both normal and cancer cells, induce expression of p21, and differentiate surviving cancer cells to a nonproliferating phenotype. These compounds may be valuable leads for the development of new chemotherapeutic agents.