893 resultados para Percentage of Fat Mass
Resumo:
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+) and floxed Dicer (Dicerlox/lox) mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO). Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a) measure body composition, b) follow food intake and body weight dynamics, c) evaluate basal metabolism and effects of food deprivation, and d) assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling), as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin) and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1). A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we here present a unique model that allows for the study of processes involved in reversing obesity. Moreover, our study identified the cortex as a brain area important for body weight homeostasis.
Resumo:
De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.
Resumo:
OBJECTIVE: Little is known about the influence of different training types on relative fat mobilization with exercise. The purpose of this study was to analyze the changes induced by aerobic training (AT), resistance (RT) or a combination of both (AT+RT) on total fat mass (TFM) and regional fat mass (RFM). Further, the relative contribution of different regions, upper limbs (UL), lower limbs (LL), and trunk (Tr), were compared. DESIGN AND METHODS: Forty-five overweight and premenopausal women were randomized in either AT, RT or AT+RT. All training groups exercised for the same duration (60 min), 3 times per week for 5 months. Body composition was estimated using dual energy X-ray absorptiometry. RESULTS: TFM decreased significantly in all groups (-4.6 ± 1.9 kg; -3.8 ± 2.6 kg, and -4.7 ± 3.0 kg in AT, RT, and AT+RT groups respectively; P < 0.001). The relative contribution of FM into each segment changed significantly: TrFM represented 46.6% ± 5.8% of TFM at baseline and reduced to 43.1% ± 5.5% (P < 0.001); LLFM was 39.7% ± 5.8% vs. 41.6% ± 5.7% (P < 0.01); ULFM was 11.3% ± 1.3% vs. 12.2% ± 1.4% (P < 0.01). CONCLUSION: Training type did not influence changes of TFM and RFM. Fat mobilization came predominantly from Tr in all training protocols. These findings suggest that overweight and obese women can reduce TFM and RFM, independently of training type.
Resumo:
This study characterized the fecal indicator bacteria (FIB), including Escherichia coli (E. coli) and Enteroccocus (ENT), disseminated over time in the Bay of Vidy, which is the most contaminated area of Lake Geneva. Sediments were collected from a site located at similar to 500 m from the present waste water treatment plant (WWTP) outlet pipe, in front of the former WWTP outlet pipe, which was located at only 300 m from the coastal recreational area (before 2001). E. coil and ENT were enumerated in sediment suspension using the membrane filter method. The FIB characterization was performed for human Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) and human specific bacteroides by PCR using specific primers and a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Bacterial cultures revealed that maximum values of 35.2 x 10(8) and 6.6 x 10(6) CFU g(-1) dry sediment for E. coil and ENT, respectively, were found in the sediments deposited following eutrophication of Lake Geneva in the 1970s. whereas the WWTP started operating in 1964. The same tendency was observed for the presence of human fecal pollution: the percentage of PCR amplification with primers ESP-1/ESP-2 for E. faecalis and E. faecium indicated that more than 90% of these bacteria were from human origin. Interestingly, the PCR assays for specific-human bacteroides HF183/HF134 were positive for DNA extracted from all isolated strains of sediment surrounding WWPT outlet pipe discharge. The MALDI-TOF MS confirmed the presence of general E. coli and predominance E. faecium in isolated strains. Our results demonstrated that human fecal bacteria highly increased in the sediments contaminated with WWTP effluent following the eutrophication of Lake Geneva. Additionally, other FIB cultivable strains from animals or adapted environmental strains were detected in the sediment of the bay. The approaches used in this research are valuable to assess the temporal distribution and the source of the human fecal pollution in aquatic environments. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
There is little information regarding the prevalence of thinness in European adolescents. This was assessed in a convenience sample of children and adolescents from the Lisbon area (Portugal). Cross-sectional study including 2494 boys and 2519 girls aged 10-18 years. Body mass index (BMI), waist and hip were measured using standardized methods; thinness was defined using international criteria. Body fat was assessed by bioelectrical impedance. In girls, prevalence of thinness, overweight and obesity were 5.6%, 19.7% and 4.7%, respectively, whereas the corresponding numbers in boys were 3.9%, 17.4% and 5.3%. Prevalence of thinness increased whereas obesity decreased with age: from 1.5% to 7.6% for thinness and from 9.2% to 3.8% for obesity in girls aged 10 and 18, respectively. In boys, the corresponding trends were from 0% to 7.3% for thinness and from 10.6% to 3% for obesity. After adjusting for age, differences were found between BMI groups for weight, body fat percentage, fat mass, lean mass, waist and hip, while no differences regarding height were found between thin and normal weight participants. The prevalence of thinness is more frequent than obesity after age 14 in girls and 16 years in boys. Thinness is associated with a decreased body weight and body fat, whereas no consistent effect on height was noted.
Resumo:
BACKGROUND: Three non-synonymous single nucleotide polymorphisms (Q223R, K109R and K656N) of the leptin receptor gene (LEPR) have been tested for association with obesity-related outcomes in multiple studies, showing inconclusive results. We performed a systematic review and meta-analysis on the association of the three LEPR variants with BMI. In addition, we analysed 15 SNPs within the LEPR gene in the CoLaus study, assessing the interaction of the variants with sex. METHODOLOGY/PRINCIPAL FINDINGS: We searched electronic databases, including population-based studies that investigated the association between LEPR variants Q223R, K109R and K656N and obesity- related phenotypes in healthy, unrelated subjects. We furthermore performed meta-analyses of the genotype and allele frequencies in case-control studies. Results were stratified by SNP and by potential effect modifiers. CoLaus data were analysed by logistic and linear regressions and tested for interaction with sex. The meta-analysis of published data did not show an overall association between any of the tested LEPR variants and overweight. However, the choice of a BMI cut-off value to distinguish cases from controls was crucial to explain heterogeneity in Q223R. Differences in allele frequencies across ethnic groups are compatible with natural selection of derived alleles in Q223R and K109R and of the ancient allele in K656N in Asians. In CoLaus, the rs10128072, rs3790438 and rs3790437 variants showed interaction with sex for their association with overweight, waist circumference and fat mass in linear regressions. CONCLUSIONS: Our systematic review and analysis of primary data from the CoLaus study did not show an overall association between LEPR SNPs and overweight. Most studies were underpowered to detect small effect sizes. A potential effect modification by sex, population stratification, as well as the role of natural selection should be addressed in future genetic association studies.
Resumo:
Interaction betweeen Telenomus remus and Trichogramma pretiosum in the management of Spodoptera spp. The use of egg parasitoids is a promising strategy for Integrated Pest Management (IPM), but different species of parasitoids have greater or lesser control efficiency, depending on the pest species. Recently, not only Anticarsia gemmatalis and Pseudoplusia includens but also Spodoptera cosmioides and S. eridania have been among the key Lepidoptera larvae attacking soybeans. This study evaluated the combination of Telenomus remus and Trichogramma pretiosum for parasitism of eggs of the Spodoptera complex, for better control efficiency and broader spectrum of action among the key pests of soybeans. The experiment was carried out under controlled environmental conditions (25 ± 2ºC; 70 ± 10% RH; and 14 h photophase) in a completely randomized experimental design with seven treatments and 10 replicates with S. frugiperda, S. cosmioides and S. eridania eggs. Each replicate consisted of one egg mass of each Spodoptera species, with approximately 100 eggs offered to the parasitoids. The treatments were: 1) 10 females of T. pretiosum; 2) nine females of T. pretiosum and one female of T. remus; 3) eight females of T. pretiosum and two females of T. remus; 4) seven females of T. pretiosum and three females of T. remus; 5) six females of T. pretiosum and four females of T. remus; 6) five females of T. pretiosum and five females of T. remus, and 7) 10 females of T. remus. The parameter evaluated was the percentage of parasitized eggs. Results showed that treatments combining both parasitoid species with only 1 T. remus for each 9 T. pretiosum (10%) and only 2 T. remus for each 8 T. pretiosum (20%) were enough to significantly increase the parasitism observed on eggs of S. cosmioides and S. frugiperda, respectively. This association of T. pretiosum and T. remus in different proportions is very promising for biological control in IPM programs because it provides wide spectrum of control.
Resumo:
To explore the discriminatory power of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for detecting subtle differences in isogenic isolates, we tested isogenic strains of Staphylococcus aureus differing in their expression of resistance to methicillin or teicoplanin. More important changes in MALDI-TOF MS spectra were found with strains differing in methicillin than in teicoplanin resistance. In comparison, very minor or no changes were recorded in pulsed-field gel electrophoresis profiles or peptidoglycan muropeptide digest patterns of these strains, respectively. MALDI-TOF MS might be useful to detect subtle strain-specific differences in ionizable components released from bacterial surfaces and not from their peptidoglycan network.
Resumo:
The aim of this work was the use of NIR technology by direct application of a fiber optic probe on back fat to analyze the fatty acid composition of CLA fed boars and gilts. 265 animals were fed 3 different diets and the fatty acid profile of back fat from Gluteus medius was analyzed using gas chromatography and FT-NIR. Spectra were acquired using a Bruker Optics Matrix-F duplex spectrometer equipped with a fiber optic probe (IN-268-2). Oleic and stearic fatty acids were predicted accurately; myristic, vaccenic and linoleic fatty acids were predicted with lower accuracy, while palmitic and α-linolenic fatty acids were poorly predicted. The relative percentage of fatty acids and NIR spectra showed differences in fatty acid composition of back fat from pigs fed CLA which increased the relative percentage of SFA and PUFA while MUFA decreased. Results suggest that a NIR fiber optic probe can be used to predict total saturated and unsaturated fatty acid composition, as well as the percentage of stearic and oleic. NIR showed potential as a rapid and easily implemented method to discriminate carcasses from animals fed different diets.
Resumo:
Adipose tissue is not an inert cell mass contributing only to the storage of fat, but a sophisticated ensemble of cellular components with highly specialized and complex functions. In addition to managing the most important energy reserve of the body, it secretes a multitude of soluble proteins called adipokines, which have beneficial or, alternatively, deleterious effects on the homeostasis of the whole body. The expression of these adipokines is an integrated response to various signals received from many organs, which depends heavily on the integrity and physiological status of the adipose tissue. One of the main regulators of gene expression in fat is the transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), which is a fatty acid- and eicosanoid-dependent nuclear receptor that plays key roles in the development and maintenance of the adipose tissue. Furthermore, synthetic PPARgamma agonists are therapeutic agents used in the treatment of type 2 diabetes.This review discusses recent knowledge on the link between fat physiology and metabolic diseases, and the roles of PPARgamma in this interplay via the regulation of lipid and glucose metabolism. Finally, we assess the putative benefits of targeting this nuclear receptor with still-to-be-identified highly selective PPARgamma modulators.
Resumo:
Brachial circumference (BC), also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS) meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men) of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p<0.05) in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not identified any genome-wide significant signals and do not observe robust association of previously established obesity loci with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC.
Resumo:
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by many cells and tissues including pancreatic beta-cells, liver, skeletal muscle, and adipocytes. This study investigates the potential role of MIF in carbohydrate homeostasis in a physiological setting outside of severe inflammation, utilizing Mif knockout (MIF-/-) mice. Compared with wild-type (WT) mice, MIF-/- mice had a lower body weight, from birth until 4 months of age, but subsequently gained weight faster, resulting in a higher body weight at 12 months of age. The lower weight in young mice was related to a higher energy expenditure, and the higher weight in older mice was related to an increased food intake and a higher fat mass. Fasting blood insulin level was higher in MIF-/- mice compared with WT mice at any age. After i.p. glucose injection, the elevation of blood insulin level was higher in MIF-/- mice compared with WT mice, at 2 months of age, but was lower in 12-month-old MIF-/- mice. As a result, the glucose clearance during intraperitoneal glucose tolerance tests was higher in MIF-/- mice compared with WT mice until 4 months of age, and was lower in 12-month-old MIF-/- mice. Insulin resistance was estimated (euglycemic-hyperinsulinemic clamp tests), and the phosphorylation activity of AKT was similar in MIF-/- mice and WT mice. In conclusion, this mouse model provides evidence for the role of MIF in the control of glucose homeostasis.
Resumo:
The widespread use of combination antiretroviral therapy (ARVs) has considerably improved the prognosis of patients infected with HIV. Conversely, considerable advances have been recently realized for the therapy of hepatitis C infection with the recent advent of potent new anti-HCV drugs that allow an increasing rate HCV infection cure. Despite their overall efficacy, a significant number of patients do not achieve or maintain adequate clinical response, defined as an undetectable viral load for HIV, and a sustained virological response (or cure) in HCV infection. Treatment failure therefore still remains an important issue besides drugs toxicities and viral resistance which is not uncommon in a significant percentage of patients who do not reach adequate virological suppression. The reasons of variability in drug response are multifactorial and apart from viral genetics, other factors such as environmental factors, drug- drug interactions, and imperfect compliance may have profound impact on antiviral drugs' clinical response. The possibility of measuring plasma concentration of antiviral drugs enables to guide antiviral drug therapy and ensure optimal drug exposure. The overall objective of this research was to widen up the current knowledge on pharmacokinetic and pharmacogenetic factors that influence the clinical response and toxicity of current and newly approved antiretroviral and anti-HCV drugs. To that endeavour, analytical methods using liquid chromatography coupled with tandem mass spectrometry have been developed and validated for the precise and accurate measurement of new antiretroviral and anti-HCV drugs . These assays have been applied for the TDM of ARVs and anti-HCV in patients infected with either HIV or HCV respectively, and co-infected with HIV- HCV. A pharmacokinetic population model was developed to characterize inter and intra-patient variability of rilpivirine, the latest marketed Non Nucleoside Reverse transcriptase (NNRTI) Inhibitor of HIVand to identify genetic and non genetic covariates influencing rilpivirine exposure. None of the factors investigated so far showed however any influence of RPV clearance. Importantly, we have found that the standard daily dosage regimen (25 mg QD) proposed for rilpivirine results in concentrations below the proposed therapeutic target in about 40% of patients. In these conditions, virologie escape is a potential risk that remains to be further investigated, notably via the TDM approach that can be a useful tool to identify patients who are at risk for being exposed to less than optimal levels of rilpivirine in plasma. Besides the last generation NNRTI rilpivirine, we have studied efavirenz, the major NNRTI clinically used so far. Namely for efavirenz, we aimed at identifying a potential new marker of toxicity that may be incriminated for the neuropsychological sides effects and hence discontinuation of efavirenz therapy. To that endeavour, a comprehensive analysis of phase I and phase II metabolites profiles has been performed in plasma, CSF and in urine from patients under efavirenz therapy. We have found that phase II metabolites of EFV constitute the major species circulating in blood, sometimes exceeding the levels of the parent drug efavirenz. Moreover we have identified a new metabolite of efavirenz in humans, namely the 8-OH-EFV- sulfate which is present at high concentrations in all body compartments from patients under efavirenz therapy. These investigations may open the way to possible alternate phenotypic markers of efavirenz toxicity. Finally, the specific influence of P-glycoprotein on the cellular disposition of a series ARVs (NNRTIs and Pis] has been studies in in vitro cell systems using the siRNA silencing approach. -- Depuis l'introduction de la thérapie antirétrovirale (ARVs) la morbidité et la mortalité liées au VIH ont considérablement diminué. En parallèle le traitement contre le virus de l'hépatite C (VHC) a connu récemment d'énormes progrès avec l'arrivée de nouveaux médicaments puissants, ce qui a permis une augmentation considérable de la guérison de l'infection par le VHC. En dépit de l'efficacité de ces traitements antiviraux, les échecs thérapeutiques ainsi que les effets secondaires des traitements restent un problème important. Une réponse imparfaite ou la toxicité du traitement est certainement multifactorielle. Le suivi thérapeutique des médicaments [Therapeutic Drug Monitoring TDM) à travers la mesure des concentrations plasmatiques constitue une approche importante pour guider le traitement médicamenteux et de s'assurer que les patients sont exposés à des concentrations optimales des médicaments dans le sang, et puissent tirer tout le bénéfice potentiel du traitement. L'objectif global de cette thèse était d'étudier les facteurs pharmacocinétiques et pharmacogénétiques qui influencent l'exposition des médicaments antiviraux (ARVs et anti- VHC) récemment approuvés. A cet effet, des méthodes de quantification des concentrations plasmatiques des médicaments antirétroviraux, anti-VHC ainsi que pour certains métabolites ont été développées et validées en utilisant la Chromatographie liquide couplée à la spectrométrie de masse tandem. Ces méthodes ont été utilisées pour le TDM des ARVs et pour les agents anti-VHC chez les patients infectés par le VIH, et le VHC, respectivement, mais aussi chez les patients co-infectés par le VIH-VHC. Un modèle de pharmacocinétique de population a été développé pour caractériser la variabilité inter-et intra-patient du médicament rilpivirine, un inhibiteur non nucléosidique de la transcriptase de VIH et d'identifier les variables génétiques et non génétiques influençant l'exposition au médicament. Aucun des facteurs étudiés n'a montré d'influence notable sur la clairance de la rilpivirine. Toutefois, la concentration résiduelle extrapolée selon le modèle de pharmacocinétique de population qui a été développé, a montré qu'une grande proportion des patients présente des concentrations minimales inférieures à la cible thérapeutique proposée. Dans ce contexte, la relation entre les concentrations minimales et l'échappement virologique nécessite une surveillance étroite des taux sanguins des patients recevant de la rilpivirine. A cet effet, le suivi thérapeutique est un outil important pour l'identification des patients à risque soient sous-exposés à lai rilpivirine. Pour identifier de nouveaux marqueurs de la toxicité qui pourraient induire l'arrêt du traitement, le profil des métabolites de phase I et de phase II a été étudié dans différentes matrices [plasma, LCR et urine) provenant de patients recevant de l'efavirenz. Les métabolites de phase II, qui n'avaient à ce jour jamais été investigués, constituent les principales espèces présentes dans les matrices étudiées. Au cours de ces investigations, un nouveau métabolite 8- OH-EFV-sulfate a été identifié chez l'homme, et ce dernier est. présent à des concentrations importantes. L'influence de certains facteurs pharmacogénétique des patients sur le profil des métabolites a été étudiée et ouvre la voie à de possibles nouveaux marqueurs phénotypiques alternatifs qui pourraient possiblement mieux prédire la toxicité associée au traitement par l'efavirenz. Finalement, nous nous sommes intéressés à étudier dans un modèle in vitro certains facteurs, comme la P-glycoprotéine, qui influencent la disposition cellulaire de certains médicaments antirétroviraux, en utilisant l'approche par la technologie du siRNA permettant de bloquer sélectivement l'expression du gène de cette protéine d'efflux des médicaments. -- Depuis l'introduction de la thérapie antiretrovirale (ARVs] la morbidité et la mortalité liées au VIH ont considérablement diminué. En parallèle le traitement contre le virus de l'hépatite C (VHC) a connu récemment d'énormes progrès avec l'arrivée de nouveaux médicaments puissants, ce qui a permis une augmentation considérable de la guérison de l'infection par le VHC. En dépit de l'efficacité de ces traitements antiviraux, les échecs thérapeutiques ainsi que les effets secondaires des traitements restent un problème important. Il a pu être démontré que la concentration de médicament présente dans l'organisme est corrélée avec l'efficacité clinique pour la plupart des médicaments agissant contre le VIH et contre le VHC. Les médicaments antiviraux sont généralement donnés à une posologie fixe et standardisée, à tous les patients, il existe cependant une importante variabilité entre les concentrations sanguines mesurées chez les individus. Cette variabilité peut être expliquée par plusieurs facteurs démographiques, environnementaux ou génétiques. Dans ce contexte, le suivi des concentrations sanguines (ou Therapeutic Drug Monitoring, TDM) permet de contrôler que les patients soient exposés à des concentrations suffisantes (pour bloquer la réplication du virus dans l'organisme) et éviter des concentrations excessives, ce qui peut entraîner l'apparition d'intolérence au traitement. Le but de ce travail de thèse est d'améliorer la compréhension des facteurs pharmacologiques et génétiques qui peuvent influencer l'efficacité et/ou la toxicité des médicaments antiviraux, dans le but d'améliorer le suivi des patients. A cet effet, des méthodes de dosage très sensibles et ont été mises au point pour permettre de quantifier les médicaments antiviraux dans le sang et dans d'autres liquides biologiques. Ces méthodes de dosage sont maintenant utilisées d'une part dans le cadre de la prise en charge des patients en routine et d'autre part pour diverses études cliniques chez les patients infectés soit par le HIV, le HCV ou bien coinfectés par les deux virus. Une partie de ce travail a été consacrée à l'investigation des différents facteurs démographiques, génétiques et environnementaux qui pourraient l'influencer la réponse clinique à la rilpivirine, un nouveau médicament contre le VIH. Toutefois, parmi tous les facteurs étudiés à ce jour, aucun n'a permis d'expliquer la variabilité de l'exposition à la rilpivirine chez les patients. On a pu cependant observer qu'à la posologie standard recommandée, un pourcentage relativement élevé de patients pourrait présenter des concentrations inférieures à la concentration sanguine minimale actuellement proposée. Il est donc utile de surveiller étroitement les concentrations de rilpivirine chez les patients pour identifier sans délai ceux qui risquent d'être sous-exposés. Dans l'organisme, le médicament subit diverses transformations (métabolisme) par des enzymes, notamment dans le foie, il est transporté dans les cellules et tissus par des protéines qui modulent sa concentration au site de son action pharmacologique. A cet effet, différents composés (métabolites) produits dans l'organisme après l'administration d'efavirenz, un autre médicament anti-VIH, ont été étudiés. En conclusion, nous nous sommes intéressés à la fois aux facteurs pharmacologiques et génétiques des traitements antiviraux, une approche qui s'inscrit dans l'optique d'une stratégie globale de prise en charge du patient. Dans ce contexte, le suivi des concentrations sanguines de médicaments constitue une des facettes du domaine émergent de la Médecine Personnalisée qui vise à maximiser le bénéfice thérapeutique et le profil de tolérance des médicaments antiviraux
Resumo:
The development of new therapeutic options for renal tumors has lead to the need of a pretherapeutic diagnosis for an increasing proportion of patients presenting with a renal mass. This need is particularly important for a small, incidentally discovered renal mass (less than 4 cm) as it can be a benign lesion in a significant percentage of cases. Recent studies have shown that needle biopsy is an accurate and safe method allowing for a precise histopathological diagnosis of the mass in most cases. The aims of the biopsy are (1) to assess the benign or malignant nature of the lesion, (2) to assess the primary or secondary nature of the lesion, and (3), in case of a primary malignancy, to determine histological prognostic factors, such as the tumor type. This review, based on the most recent literature and our own experience, is intended to provide a practical approach to the diagnosis, relying on appropriate morphologic assessment and the use of immunohistochemistry.
Resumo:
OBJECTIVE: To study the relationship between the energy expenditure for activity (EEAct), the level of activity and adiposity in a group of 9-year-old boys (n = 28) with different body composition (body weight, 38 +/- 10 kg [range, 23 to 66 kg]; fat mass, 23% +/- 10% [range, 8% to 42%]). METHODS: Total energy expenditure (TEE) was measured by means of the heart-rate monitoring method. EEAct was calculated as TEE-(REE+0.1 TEE), where REE is the postabsorptive resting energy expenditure and 0.1 TEE corresponds to the postprandial thermogenesis (approximately 10% of TEE). RESULTS: TEE, REE, and EEAct were 9388 +/- 1859, 5154 +/- 642, and 3295 +/- 1356 l J/day, respectively. Daily time devoted to sedentary and nonsedentary activities averaged 290 +/- 155 minutes (range, 69 to 621) and 534 +/- 150 minutes (range, 180 to 783), respectively. Time spent on sedentary activities was directly proportional to fat mass percentage (r = 0.46; p < 0.05). It was the only variable, among the free-living physical-activity [EEAct, TEE/(REE+0.1 TEE) ratio, time spent in nonsedentary and sedentary activities] variables, which remained significantly in the multiple step-down regression analysis final equation (r = 0.46; p < 0.05). CONCLUSIONS: The positive relationship between adiposity and time spent on sedentary activities in 9-year-old boys suggests the importance of the role played by muscular activity, at least in the maintenance of obesity in childhood. Prepubertal children should be encouraged to spend less time on sedentary activities to treat and prevent their obesity.