994 resultados para Pelvic Floor Muscle
Resumo:
INTRODUCTION: As it might lead to less discomfort, magnetic nerve stimulation (MNS) is increasingly used as an alternative to electrical stimulation methods. Yet, MNS and electrical nerve stimulation (ENS) and electrical muscle stimulation (EMS) have not been formally compared for the evaluation of plantar flexor neuromuscular function. METHODS: We quantified plantar flexor neuromuscular function with ENS, EMS and MNS in 10 volunteers in fresh and fatigued muscles. Central alterations were assessed through changes in voluntary activation level (VAL) and peripheral function through changes in M-wave, twitch and doublet (PS100) amplitudes. Discomfort associated with 100-Hz paired stimuli delivered with each method was evaluated on a 10-cm visual analog scale. RESULTS: VAL, agonist and antagonist M-wave amplitudes and PS100 were similar between the different methods in both fresh and fatigued states. Potentiated peak twitch was lower in EMS compared to ENS, whereas no difference was found between ENS and MNS for any parameter. Discomfort associated with MNS (1.5 ± 1.4 cm) was significantly less compared to ENS (5.5 ± 1.9 cm) and EMS (4.2 ± 2.6 cm) (p < 0.05). CONCLUSION: When PS100 is used to evaluate neuromuscular properties, MNS, EMS and ENS can be used interchangeably for plantar flexor neuromuscular function assessment as they provide similar evaluation of central and peripheral factors in unfatigued and fatigued states. Importantly, electrical current spread to antagonist muscles was similar between the three methods while discomfort from MNS was much less compared to ENS and EMS. MNS may be potentially employed to assess neuromuscular function of plantar flexor muscles in fragile populations.
Resumo:
BACKGROUND: Remodeling of quiescent vessels with increases in permeability, vasodilatation, and edema are hallmarks of inflammatory disorders. Factors involved in this type of remodeling represent potential therapeutic targets. OBJECTIVES: We investigated whether the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) β/δ, a regulator of metabolism, fibrosis, and skin homeostasis, is involved in regulation of this type of remodeling. METHODS: Wild-type and various Pparb/d mutant mice were used to monitor dermal acute vascular hyperpermeability (AVH) and passive systemic anaphylaxis-induced hypothermia and edema. PPARβ/δ-dependent kinase activation and remodeling of endothelial cell-cell junctions were addressed by using human endothelial cells. RESULTS: AVH and dilatation of dermal microvessels stimulated by vascular endothelial growth factor A, histamine, and thrombin are severely compromised in PPARβ/δ-deficient mice. Selective deletion of the Pparb/d-encoding gene in endothelial cells in vivo similarly limits dermal AVH and vasodilatation, providing evidence that endothelial PPARβ/δ is the major player in regulating acute dermal microvessel remodeling. Furthermore, endothelial PPARβ/δ regulatory functions are not restricted to the skin vasculature because its deletion in the endothelium, but not in smooth muscle cells, also leads to reduced systemic anaphylaxis, the most severe form of allergic reaction, in which an acute vascular response plays a key role. PPARβ/δ-dependent AVH activation likely involves the activation of mitogen-activated protein kinase and Akt pathways and leads to downstream destabilization of endothelial cell-cell junctions. CONCLUSION: These results unveil not only a novel function of PPARβ/δ as a direct regulator of acute vessel permeability and dilatation but also provide evidence that antagonizing PPARβ/δ represents an important strategy to consider for moderating diseases with altered endothelial integrity, such as acute inflammatory and allergic disorders.
Resumo:
Primary cultures of gilthead sea bream myocytes were performed in order to examine the relative metabolic function of insulin compared with IGF-I and IGF-II (insulin-like growth factors, IGFs) at different stages in the cell culture. In these cells, the in vitro effects of insulin and IGFs on 2-deoxyglucose (2-DG) and L-alanine uptake were studied in both myocytes (day 4) and small myotubes (day 9). 2-DG uptake in gilthead sea bream muscle cells was increased in the presence of insulin and IGFs in a time dependent manner and along with muscle cell differentiation. On the contrary, L-alanine uptake was also stimulated by insulin and IGFs but showed an inverse pattern, being the uptake higher in small myocytes than in large myotubes. The results of preincubation with inhibitors (PD-98059, wortmannin, and cytochalasin B) on 2-DG uptake indicated that insulin and IGFs stimulate glucose uptake through the same mechanisms, and evidenced that mitogenesis activator protein kinase (MAPK) and PI3K-Akt transduction pathways mediate the metabolic function of these peptides. In the same way, we observed that GLUT4 protein synthesis was stimulated in the presence of insulin and IGFs in gilthead sea bream muscle cells in a different manner at days 4 or 9 of the culture. In summary we describe here, for the first time, the effects of insulin and IGFs on 2-DG and L-alanine uptake in primary culture of gilthead sea bream muscle cells. We show that both MAPK and PI3K-Akt transduction pathways are needed in order to control insulin and IGFs actions in these cells. Moreover, changes in glucose uptake can be explained by the action of the GLUT4 transporter, which is stimulated in the presence of insulin and IGFs throughout the cell culture.
Resumo:
The aim of this study was to identity metabolites and transformation products (TPs) in chicken muscle from amoxicillin (AMX), cephapirin (PIR) and ceftiofur (TIO), which are antibiotics of the β-lactam family. Liquid chromatography coupled to quadrupole time-of-flight (QqTOF) mass spectrometry was utilized due to its high resolution, high mass accuracy and MS/MS capacity for elemental composition determination and structural elucidation. Amoxicilloic acid (AMA) and amoxicillin diketopiperazine (DKP) were found as transformation products from AMX. Desacetylcephapirin (DAC) was detected as a metabolite of PIR. Desfuroylceftiofur (DFC) and its conjugated compound with cysteine (DFC-S-Cys) were detected as a result of TIO in contact with chicken muscle tissue. The metabolites and transformation products were also monitored during the in vivo AMX treatment and slaughtering period. It was found that two days were enough to eliminate AMX and associated metabolites/transformation products after the end of administration.
Resumo:
Abstract Objective: We aimed to determine the validity of two risk scores for patients with non-muscle invasive bladder cancer in different European settings, in patients with primary tumours. Methods: We included 1,892 patients with primary stage Ta or T1 non-muscle invasive bladder cancer who underwent a transurethral resection in Spain (n = 973), the Netherlands (n = 639), or Denmark (n = 280). We evaluated recurrence-free survival and progression-free survival according to the European Organisation for Research and Treatment of Cancer (EORTC) and the Spanish Urological Club for Oncological Treatment (CUETO) risk scores for each patient and used the concordance index (c-index) to indicate discriminative ability. Results: The 3 cohorts were comparable according to age and sex, but patients from Denmark had a larger proportion of patients with the high stage and grade at diagnosis (p,0.01). At least one recurrence occurred in 839 (44%) patients and 258 (14%) patients had a progression during a median follow-up of 74 months. Patients from Denmark had the highest 10- year recurrence and progression rates (75% and 24%, respectively), whereas patients from Spain had the lowest rates (34% and 10%, respectively). The EORTC and CUETO risk scores both predicted progression better than recurrence with c-indices ranging from 0.72 to 0.82 while for recurrence, those ranged from 0.55 to 0.61. Conclusion: The EORTC and CUETO risk scores can reasonably predict progression, while prediction of recurrence is more difficult. New prognostic markers are needed to better predict recurrence of tumours in primary non-muscle invasive bladder cancer patients.