937 resultados para Pavements, Prestressed concrete.
Resumo:
In 1990, early distress had shown up on US 20 in Hamilton/Webster counties, three years after paving. Since that time, over a dozen more projects, constructed between 1984 and 1994, have been found to exhibit similar early distress. Several changes to the concrete and Portland cement specifications occurred in 1994 and 1996. This study was undertaken to investigate in place concrete pavements before and after specification changes were implemented. The objective of this research is to evaluate the impact of Portland cement and concrete specification changes made in 1994 and 1996 on PCC durability. Cores were obtained in 1998 and 2003 from projects constructed in 1992, before specification changes, and 1997 after specification changes. The following is a brief summary of the conclusions: 1. The pavements in the study constructed under the new specifications are performing much better after 5 years of service than the pavements constructed under the old specifications. 2. According to ISU, micro-cracking is evident in all concrete that has been in service, due to thermal stresses and loading stresses. Also, the low vacuum SEM will desiccate the concrete enough to cause micro-cracking. The SEM should not be used as a tool to indicate micro-cracking. 3. Use of Type II cement (C3A <8%) and a 3.0% SO3 limit does not completely eliminate ettringite infilling in air voids, as indicated in the bottom of the 1997 cores. 4. In areas of high moisture (bottom of the core), infilling is present in most of the 1997 cores. 5. Low air content and high spacing factor in the top of 1992 cores apparently causes F/T cycling cracking and then increased moisture paths from cracking causes infilling. 6. Use of ground granulated blast furnace slag (GGBFS) and fly ash reduces ettringite infilling either by diluting the aluminate (C3A) or lowering permeability, which slows ingress of moisture. 7. The specification changes that made the biggest impact on pavement durability are the limits on vibration and increase in air content in September 1994. 8. Investigations of cores from pavements placed in 2002 and 2003 indicate improved air contents and spacing factors. In-place air content and spacing factors should be monitored to determine if appropriate air void parameters are being met.
Resumo:
Plastic air content is typically tested by the pressure method, ASTM C138. Loss of air content through the paver has been shown to exceed 2 percent at times. Research has shown that early deterioration of pavements in Iowa may be directly or indirectly related to low or inadequate air content. Hardened air content is typically checked using the linear traverse method, ASTM C457. The linear traverse method is very time consuming and could not be used on a production scale. A quick and effective method of testing in place air content is needed. Research has shown a high degree of correlation with the high-pressure method of determining air content of hardened concrete versus plastic air content in laboratory conditions. This research indicated that air contents are more variable when comparing core results to plastic air content, although the overall average for the air content was comparable. Perhaps, the location of the plastic air content test, obtained from construction records, versus location of the cores was not as accurate as needed.
Resumo:
The effects of diethylenetriaminpenta(methylenephosphonic acid) (DTPMP), a phosphonate inhibitor, on the growth of delayed ettringite have been evaluated using concrete in highway US 20 near Williams, Iowa, and the cores of six highways subject to moderate (built in 1992) or minor (built in 1997) deterioration. Application of 0.01 and 0.1 vol. % DTPMP to cores was made on a weekly or monthly basis for one year under controlled laboratory-based freeze-thaw and wet-dry conditions over a temperature range of -15 degrees to 58 degrees C to mimic extremes in Iowa roadway conditions. The same concentrations of phosphonate were also applied to cores left outside (roof of Science I at Iowa State University) over the same period of time. Nineteen applications of 0.1 vol. % DTPMP with added deicing salt solution (about 23 weight % NACL) were made to US 20 during the winters of 2003 and 2004. In untreated samples, air voids, pores, and occasional cracks are lined with acicular ettringite crystals (up to 50 micrometers in length) whereas air voids, pores, and cracks in concrete from the westbound lane of US 20 are devoid of ettringite up to a depth of about 0.5 mm from the surface of the concrete. Ettringite is also absent in zones up to 6 mm from the surface of concrete slabs placed on the roof of Science I and cores subject to laboratory-based freeze-thaw experiments. In these zones, the relatively high concentration of DTPMP caused it to behave as a chelator. Stunted ettringite crystals 5 to 25 micrometers in length, occasionally coated with porlandite, form on the margins of these zones indicating that in these areas DTPMP behaved as an inhibitor due to a reduction in the concentration of phosphonate. Analyses of mixes of ettringite and DTPMP using electrospray mass spectrometry suggests that the stunting of ettringite growth is caused by the adsorption of a Ca2+ ion and a water molecule to deprotonated DTPMP on the surface of the {0001} face of ettringite. It is anticipated that by using a DTPMP concentration of between 0.001 and 0.01 vol. % for the extended life of a highway (i.e. >20 years), deterioration caused by the expansive growth of ettringite will be markedly reduced.
Resumo:
The members of the Iowa Concrete Paving Association, the National Concrete Pavement Technology Center Research Committee, and the Iowa Highway Research Board commissioned a study to examine alternative ways of developing transverse joints in portland cement concrete pavements. The present study investigated six separate variations of vertical metal strips placed above and below the dowels in conventional baskets. In addition, the study investigated existing patented assemblies and a new assembly developed in Spain and used in Australia. The metal assemblies were placed in a new pavement and allowed to stay in place for 30 days before the Iowa Department of Transportation staff terminated the test by directing the contractor to saw and seal the joints. This report describes the design, construction, testing, and conclusions of the project.
Resumo:
Pavements are subjected to different stresses during their design lives. A properly designed pavement will perform adequately during its design life, and the distresses will not exceed the allowable limits; however, there are several factors that can lead to premature pavement failure. One such factor is moisture sensitivity. AASHTO T 283 is the standard test used in the moisture susceptibility evaluation of asphalt mixtures, but the results of the test are not very representative of the expected behavior of asphalt mixtures. The dynamic modulus test measures a fundamental property of the mixture. The results of the dynamic modulus test can be used directly in the Mechanistic-Empirical Pavement Design Guide (MEPDG) and are considered a very good representation of the expected field performance of the mixture. Further research is still needed to study how the dynamic modulus results are affected by moisture. The flow number test was studied in previous research as a candidate test for moisture-susceptibility evaluation, but the results of that research were not favorable. This research has four main objectives. The first objective of this research is to evaluate the usefulness of the dynamic modulus and flow number tests in moisture-susceptibility evaluation. The second objective is to compare the results to those achieved using the AASHTO T 283 test. The third objective is to study the effect of different methods of sample conditioning and testing conditions. The fourth objective of the research is to study the variability in the test results.
Resumo:
Among the variety of road users and vehicle types that travel on U.S. public roadways, slow moving vehicles (SMVs) present unique safety and operations issues. SMVs include vehicles that do not maintain a constant speed of 25 mph, such as large farm equipment, construction vehicles, or horse-drawn buggies. Though the number of crashes involving SMVs is relatively small, SMV crashes tend to be severe. Additionally, SMVs can be encountered regularly on non-Interstate/non-expressway public roadways, but motorists may not be accustomed to these vehicles. This project was designed to improve transportation safety for SMVs on Iowa’s public roadway system. This report includes a literature review that shows various SMV statistics and laws across the United States, a crash study based on three years of Iowa SMV crash data, and recommendations from the SMV community.
Resumo:
This study evaluated the use of electromagnetic gauges to determine the adjusted densities of HMA pavements. Field measurements were taken with two electromagnetic gauges, the Pavement Quality Indicator (PQI) 301 and the Pavetracker Plus 2701B. Seven projects were included in the study with 3 to 5 consecutive paving days. For each day/lot 20 randomly selected locations were tested along with seven core locations. The analysis of PaveTracker and PQI density consisted of determining which factors are statistically significant, and core density residuals and a regression analysis of core as a function of PaveTracker and PQI readings. The following key conclusions can be stated: 1. Core density, traffic and binder content were all found to be significant for both electromagnetic gauges studied, 2. Core density residuals are normally distributed and centered at zero for both electromagnetic gauges, 3. For PaveTracker readings, statistically one third of the lots do not have an intercept that is zero and two thirds of the lots do not rule out a scaler correction factor of zero, 4. For PQI readings, statistically the 95% confidence interval rules out the intercept being zero for all seven projects and six of the seven projects do not rule out the scaler correction factor being zero, 5. The PQI 301 gauge should not be used for quality control or quality assurance, and 6. The Pavetracker 2701B gauge can be used for quality control but not quality assurance. This study has found that with the limited sample size, the adjusted density equations for both electromagnetic gauges were determined to be inadequate. The PaveTracker Plus 2701B was determined to be better than the PQI 301. The PaveTracker 2701B could still be applicable for quality assurance if the number of core locations per day is reduced and supplemented with additional PaveTracker 2701B readings. Further research should be done to determine the minimum number of core locations to calibrate the gauges each day/lot and the number of additional PaveTracker 2701B readings required.
Resumo:
Contractors, engineers, owners and manufacturers want to be certain that a new product or procedure will yield beneficial results when compared to the current method of construction. The following research was conducted in order to compare the performance of epoxy coated dowel bars to dowel bars of alternative shapes and materials such as stainless steel and glass fiber reinforced polymer (GFRP). Research was also done on the effect that dowel bar spacing has on the performance of concrete pavements. Four phases of this research are described in this report.
Resumo:
The Iowa Method for bridge deck overlays has been very successful in Iowa since its adoption in the 1970s. This method involves removal of deteriorated portions of a bridge deck followed by placement of a layer of dense (Type O) Portland Cement Concrete (PCC). The challenge encountered with this type of bridge deck overlay is that the PCC must be mixed on-site, brought to the placement area and placed with specialized equipment. This adds considerably to the cost and limits contractor selection, because not all contractors have the capability or equipment required. If it is possible for a ready-mix supplier to manufacture and deliver a dense PCC to the grade, then any competent bridge deck contractor would be able to complete the job. However, Type O concrete mixes are very stiff and generally cannot be transported and placed with ready-mix type trucks. This is where a “super-plasticizer” comes in to use. Addition of this admixture provides a substantial increase in the workability of the concrete – to the extent that it can be delivered to the site and placed on the deck directly out of a ready-mix truck. The objective of this research was to determine the feasibility of placing a deck overly of this type on county bridges within the limits of county budgets and workforce/contractor availability.
Resumo:
Recent data compiled by the National Bridge Inventory revealed 29% of Iowa's approximate 24,600 bridges were either structurally deficient or functionally obsolete. This large number of deficient bridges and the high cost of needed repairs create unique problems for Iowa and many other states. The research objective of this project was to determine the load capacity of a particular type of deteriorating bridge – the precast concrete deck bridge – which is commonly found on Iowa's secondary roads. The number of these precast concrete structures requiring load postings and/or replacement can be significantly reduced if the deteriorated structures are found to have adequate load capacity or can be reliably evaluated. Approximately 600 precast concrete deck bridges (PCDBs) exist in Iowa. A typical PCDB span is 19 to 36 ft long and consists of eight to ten simply supported precast panels. Bolts and either a pipe shear key or a grouted shear key are used to join adjacent panels. The panels resemble a steel channel in cross-section; the web is orientated horizontally and forms the roadway deck and the legs act as shallow beams. The primary longitudinal reinforcing steel bundled in each of the legs frequently corrodes and causes longitudinal cracks in the concrete and spalling. The research team performed service load tests on four deteriorated PCDBs; two with shear keys in place and two without. Conventional strain gages were used to measure strains in both the steel and concrete, and transducers were used to measure vertical deflections. Based on the field results, it was determined that these bridges have sufficient lateral load distribution and adequate strength when shear keys are properly installed between adjacent panels. The measured lateral load distribution factors are larger than AASHTO values when shear keys were not installed. Since some of the reinforcement had hooks, deterioration of the reinforcement has a minimal affect on the service level performance of the bridges when there is minimal loss of cross-sectional area. Laboratory tests were performed on the PCDB panels obtained from three bridge replacement projects. Twelve deteriorated panels were loaded to failure in a four point bending arrangement. Although the panels had significant deflections prior to failure, the experimental capacity of eleven panels exceeded the theoretical capacity. Experimental capacity of the twelfth panel, an extremely distressed panel, was only slightly below the theoretical capacity. Service tests and an ultimate strength test were performed on a laboratory bridge model consisting of four joined panels to determine the effect of various shear connection configurations. These data were used to validate a PCDB finite element model that can provide more accurate live load distribution factors for use in rating calculations. Finally, a strengthening system was developed and tested for use in situations where one or more panels of an existing PCDB need strengthening.
Resumo:
Wet pavement friction is known to be one of the most important roadway safety parameters. In this research, frictional properties of flexible (asphalt) pavements were investigated. As a part of this study, a laboratory device to polish asphalt specimens was refined and a procedure to evaluate mixture frictional properties was proposed. Following this procedure, 46 different Superpave mixtures, one stone matrix asphalt (SMA) mixture and one porous friction course (PFC) mixture were tested. In addition, 23 different asphalt and two concrete field sections were also tested for friction and noise. The results of both field and laboratory measurements were used to develop an International Friction Index (IFI)-based protocol for measurement of the frictional characteristics of asphalt pavements for laboratory friction measurements. Based on the results of the study, it appears the content of high friction aggregate should be 20% or more of the total aggregate blend when used with other, polish susceptible coarse aggregates; the frictional properties increased substantially as the friction aggregate content increased above 20%. Both steel slag and quartzite were found to improve the frictional properties of the blend, though steel slag had a lower polishing rate. In general, mixes containing soft limestone demonstrated lower friction values than comparable mixes with hard limestone or dolomite. Larger nominal maximum aggregate size mixes had better overall frictional performance than smaller sized mixes. In addition, mixes with higher fineness moduli generally had higher macrotexture and friction.
Resumo:
Many cities in Iowa have retained the original brick street surfaces in downtown areas and in older residential areas as the base for modern driving surfaces. The original brick surfaces were not built to handle current and future traffic loadings. In recent years, these surfaces have tended to shift and become uneven, creating problems with safety. Asphaltic concrete overlays have been the typical rehabilitation technique in these situations. This has proven to be a successful rehabilitation technique in some cases; in other cases, the combination of movement of the brick and flexibility of the asphalt has proven to accentuate the original problems. Most of the existing literature on rehabilitation of brick streets shows the use of asphaltic concrete. Other rehabilitation methods include reconstruction of the brick surface and strengthening of the surface by placing asphaltic concrete or portland cement concrete, along with sand, underneath the brick layers. To date, little if anything has been done in the area of using portland cement concrete as an overlay of the brick surfaces. This final report documents the planning, construction, and performance of unbonded ultrathin whitetopping rehabilitation of a brick street in Oskaloosa, Iowa, in 2001. It also reports on a similar project in Des Moines that was constructed two years later in 2003.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.