936 resultados para Pattern recognition, cluster finding, calibration and fitting methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological experiments often produce enormous amount of data, which are usually analyzed by data clustering. Cluster analysis refers to statistical methods that are used to assign data with similar properties into several smaller, more meaningful groups. Two commonly used clustering techniques are introduced in the following section: principal component analysis (PCA) and hierarchical clustering. PCA calculates the variance between variables and groups them into a few uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical clustering is carried out by separating data into many clusters and merging similar clusters together. Here, we use an example of human leukocyte antigen (HLA) supertype classification to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering, respectively. However, the reader should bear in mind that the methods have been incorporated into other software as well, such as SIMCA, statistiXL, and R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authors suggested earlier hierarchical method for definition of class description at pattern recognition problems solution. In this paper development and use of such hierarchical descriptions for parallel representation of complex patterns on the base of multi-core computers or neural networks is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* This work was financially supported by the Russian Foundation for Basic Research, project no. 04-01-00858a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After many years of scholar study, manuscript collections continue to be an important source of novel information for scholars, concerning both the history of earlier times as well as the development of cultural documentation over the centuries. D-SCRIBE project aims to support and facilitate current and future efforts in manuscript digitization and processing. It strives toward the creation of a comprehensive software product, which can assist the content holders in turning an archive of manuscripts into a digital collection using automated methods. In this paper, we focus on the problem of recognizing early Christian Greek manuscripts. We propose a novel digital image binarization scheme for low quality historical documents allowing further content exploitation in an efficient way. Based on the existence of closed cavity regions in the majority of characters and character ligatures in these scripts, we propose a novel, segmentation-free, fast and efficient technique that assists the recognition procedure by tracing and recognizing the most frequently appearing characters or character ligatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of knowledge is the central one used when solving the various problems of data mining and pattern recognition in finite spaces of Boolean or multi-valued attributes. A special form of knowledge representation, called implicative regularities, is proposed for applying in two powerful tools of modern logic: the inductive inference and the deductive inference. The first one is used for extracting the knowledge from the data. The second is applied when the knowledge is used for calculation of the goal attribute values. A set of efficient algorithms was developed for that, dealing with Boolean functions and finite predicates represented by logical vectors and matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper advances a philosophically informed rationale for the broader, reflexive and practical application of arts-based methods to benefit research, practice and pedagogy. It addresses the complexity and diversity of learning and knowing, foregrounding a cohabitative position and recognition of a plurality of research approaches, tailored and responsive to context. Appreciation of art and aesthetic experience is situated in the everyday, underpinned by multi-layered exemplars of pragmatic visual-arts narrative inquiry undertaken in the third, creative and communications sectors. Discussion considers semi-guided use of arts-based methods as a conduit for topic engagement, reflection and intersubjective agreement; alongside observation and interpretation of organically employed approaches used by participants within daily norms. Techniques span handcrafted (drawing), digital (photography), hybrid (cartooning), performance dimensions (improvised installations) and music (metaphor and structure). The process of creation, the artefact/outcome produced and experiences of consummation are all significant, with specific reflexivity impacts. Exploring methodology and epistemology, both the "doing" and its interpretation are explicated to inform method selection, replication, utility, evaluation and development of cross-media skills literacy. Approaches are found engaging, accessible and empowering, with nuanced capabilities to alter relationships with phenomena, experiences and people. By building a discursive space that reduces barriers; emancipation, interaction, polyphony, letting-go and the progressive unfolding of thoughts are supported, benefiting ways of knowing, narrative (re)construction, sensory perception and capacities to act. This can also present underexplored researcher risks in respect to emotion work, self-disclosure, identity and agenda. The paper therefore elucidates complex, intricate relationships between form and content, the represented and the representation or performance, researcher and participant, and the self and other. This benefits understanding of phenomena including personal experience, sensitive issues, empowerment, identity, transition and liminality. Observations are relevant to qualitative and mixed methods researchers and a multidisciplinary audience, with explicit identification of challenges, opportunities and implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach of normal ECG recognition based on scale-space signal representation is proposed. The approach utilizes curvature scale-space signal representation used to match visual objects shapes previously and dynamic programming algorithm for matching CSS representations of ECG signals. Extraction and matching processes are fast and experimental results show that the approach is quite robust for preliminary normal ECG recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kernel methods provide a convenient way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semidefinite kernel. One problem with the most widely used kernels is that they neglect the locational information within the structures, resulting in less discrimination. Correspondence-based kernels, on the other hand, are in general more discriminating, at the cost of sacrificing positive-definiteness due to their inability to guarantee transitivity of the correspondences between multiple graphs. In this paper we generalize a recent structural kernel based on the Jensen-Shannon divergence between quantum walks over the structures by introducing a novel alignment step which rather than permuting the nodes of the structures, aligns the quantum states of their walks. This results in a novel kernel that maintains localization within the structures, but still guarantees positive definiteness. Experimental evaluation validates the effectiveness of the kernel for several structural classification tasks. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kernel methods provide a way to apply a wide range of learning techniques to complex and structured data by shifting the representational problem from one of finding an embedding of the data to that of defining a positive semidefinite kernel. In this paper, we propose a novel kernel on unattributed graphs where the structure is characterized through the evolution of a continuous-time quantum walk. More precisely, given a pair of graphs, we create a derived structure whose degree of symmetry is maximum when the original graphs are isomorphic. With this new graph to hand, we compute the density operators of the quantum systems representing the evolutions of two suitably defined quantum walks. Finally, we define the kernel between the two original graphs as the quantum Jensen-Shannon divergence between these two density operators. The experimental evaluation shows the effectiveness of the proposed approach. © 2013 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric Oxide (NO) is produced in the vascular endothelium where it then diffuses to the adjacent smooth muscle cells (SMC) activating agents known to regulate vascular tone. The close proximity of the site of NO production to the red blood cells (RBC) and its known fast consumption by hemoglobin, suggests that the blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its role in accomplishing vasodilation. Investigation of NO production and consumption rates will allow insight into this paradox. DAF-FM is a sensitive NO fluorescence probe widely used for qualitative assessment of cellular NO production. With the aid of a mathematical model of NO/DAF-FM reaction kinetics, experimental studies were conducted to calibrate the fluorescence signal showing that the slope of fluorescent intensity is proportional to [NO]2 and exhibits a saturation dependence on [DAF-FM]. In addition, experimental data exhibited a Km dependence on [NO]. This finding was incorporated into the model elucidating NO 2 as the possible activating agent of DAF-FM. A calibration procedure was formed and applied to agonist stimulated cells, providing an estimated NO release rate of 0.418 ± 0.18 pmol/cm2s. To assess NO consumption by RBCs, measurements of the rate of NO consumption in a gas stream flowing on top of an RBC solution of specified Hematocrit (Hct) was performed. The consumption rate constant (kbl)in porcine RBCs at 25°C and 45% Hct was estimated to be 3500 + 700 s-1. kbl is highly dependent on Hct and can reach up to 9900 + 4000 s-1 for 60% Hct. The nonlinear dependence of kbl on Hct suggests a predominant role for extracellular diffusion in limiting NO uptake. Further simulations showed a linear relationship between varying NO production rates and NO availability in the SMCs utilizing the estimated NO consumption rate. The corresponding SMC [NO] level for the average NO production rate estimated was approximately 15.1 nM. With the aid of experimental and theoretical methods we were able to examine the NO paradox and exhibit that endothelial derived NO is able to escape scavenging by RBCs to diffuse to the SMCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of remotely sensed data for environmental and ecological assessment has recently become more widespread in wetland research and management and advantages and limitations of this approach have been addresses (Ozesmi and Bauer 2002). Applications of remote sensing (RS) methods vary in spatial and temporal extent and resolution, in the types of data acquired, and in digital processing and pattern recognition algorithms used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]The work presented in this paper is related to Depth Recovery from Focus The approach starts calibrating focal length of the camera using the Gaussian lens law for the thin lens camera model Two approaches are presented based on the availability of the internal distance of the lens

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Enabling natural human-robot interaction using computer vision based applications requires fast and accurate hand detection. However, previous works in this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects difficult to locate. This paper presents an approach which integrates temporal coherence cues and hand detection based on wrists using a cascade classifier. With this approach, we introduce three main contributions: (1) a transparent initialization mechanism without user participation for segmenting hands independently of their gesture, (2) a larger number of detected gestures as well as a faster training phase than previous cascade classifier based methods and (3) near real-time performance for hand pose detection in video streams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports on research that examines the family language policy (FLP) and biliteracy practices of middle-class Chinese immigrant families in a metropolitan area in the southwest of the U.S. by exploring language practices pattern among family members, language and literacy environment at home, parents’ language management, parents’ language attitudes and ideologies, and biliteracy practices. In this study, I employed mixed methods, including survey and interviews, to investigate Chinese immigrant parents’ FLP, biliteracy practices, their life stories, and their experience of raising and nurturing children in an English-dominant society. Survey questionnaires were distributed to 55 Chinese immigrant parents and interviews were conducted with five families, including mothers and children. One finding from this study is that the language practices pattern at home shows the trend of language shift among the Chinese immigrants’ children. Children prefer speaking English with parents, siblings, and peers, and home literacy environment for children manifests an English-dominant trend. Chinese immigrant parents’ language attitudes and ideologies are largely influenced by English-only ideology. The priority for learning English surpasses the importance of Chinese learning, which is demonstrated by the English-dominant home literacy practices and an English-dominant language policy. Parents invest more in English literacy activities and materials for children, and very few parents implement Chinese-only policy for their children. A second finding from this study is that a multitude of factors from different sources shape and influence Chinese immigrants’ FLP and biliteracy practices. The factors consist of family-related factors, social factors, linguistic factors, and individual factors. A third finding from this study is that a wide variety of strategies are adopted by Chinese immigrant families, which have raised quite balanced bilingual children, to help children maintain Chinese heritage language (HL) and develop both English and Chinese literacy. The close examination and comparison of different families with English monolingual children, with children who have limited knowledge of HL, and with quite balanced bilingual children, this study discovers that immigrant parents, especially mothers, play a fundamental and irreplaceable role in their children’s HL maintenance and biliteracy development and it recommends to immigrant parents in how to implement the findings of this study to nurture their children to become bilingual and biliterate. Due to the limited number and restricted area and group of participant sampling, the results of this study may not be generalized to other groups in different contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.