928 resultados para Passive sampling
Resumo:
Roadside surveys such as the Breeding Bird Survey (BBS) are widely used to assess the relative abundance of bird populations. The accuracy of roadside surveys depends on the extent to which surveys from roads represent the entire region under study. We quantified roadside land cover sampling bias in Tennessee, USA, by comparing land cover proportions near roads to proportions of the surrounding region. Roadside surveys gave a biased estimate of patterns across the region because some land cover types were over- or underrepresented near roads. These biases changed over time, introducing varying levels of distortion into the data. We constructed simulated population trends for five bird species of management interest based on these measured roadside sampling biases and on field data on bird abundance. These simulations indicated that roadside surveys may give overly negative assessments of the population trends of early successional birds and of synanthropic birds, but not of late-successional birds. Because roadside surveys are the primary source of avian population trend information in North America, we conclude that these surveys should be corrected for roadside land cover sampling bias. In addition, current recommendations about the need to create more early successional habitat for birds may need reassessment in the light of the undersampling of this habitat by roads.
Resumo:
Grassland bird species continue to decline steeply across North America. Road-based surveys such as the North American Breeding Bird Survey (BBS) are often used to estimate trends and population sizes and to build species distribution models for grassland birds, although roadside survey counts may introduce bias in estimates because of differences in habitats along roadsides and in off-road surveys. We tested for differences in land cover composition and in the avian community on 21 roadside-based survey routes and in an equal number of adjacent off-road walking routes in the grasslands of southern Alberta, Canada. Off-road routes (n = 225 point counts) had more native grassland and short shrubs and less fallow land and road area than the roadside routes (n = 225 point counts). Consequently, 17 of the 39 bird species differed between the two route types in frequency of occurrence and relative abundance, measured using an indicator species analysis. Six species, including five obligate grassland species, were more prevalent at off-road sites; they included four species listed under the Canadian federal Species At Risk Act or listed by the Committee on the Status of Endangered Wildlife in Canada: Sprague’s Pipit (Anthus spragueii), Baird’s Sparrow (Ammodramus bairdii), the Chestnut-collared Longspur (Calcarius ornatus), and McCown’s Longspur (Rhynchophanes mccownii). The six species were as much as four times more abundant on off-road sites. Species more prevalent along roadside routes included common species and those typical of farmland and other human-modified habitats, e.g., the European Starling (Sturnus vulgaris), the Black-billed Magpie (Pica hudsonia), and the House Sparrow (Passer domesticus). Differences in avian community composition between roadside and off-road surveys suggest that the use of BBS data when generating population estimates or distribution models may overestimate certain common species and underestimate others of conservation concern. Our results highlight the need to develop appropriate corrections for bias in estimates derived from roadside sampling, and the need to design surveys that sample bird communities across a more representative cross-section of the landscape, both near and far from roads.
Resumo:
The North American Breeding Bird Survey (BBS) is the principal source of data to inform researchers about the status of and trend for boreal forest birds. Unfortunately, little BBS coverage is available in the boreal forest, where increasing concern over the status of species breeding there has increased interest in northward expansion of the BBS. However, high disturbance rates in the boreal forest may complicate roadside monitoring. If the roadside sampling frame does not capture variation in disturbance rates because of either road placement or the use of roads for resource extraction, biased trend estimates might result. In this study, we examined roadside bias in the proportional representation of habitat disturbance via spatial data on forest “loss,” forest fires, and anthropogenic disturbance. In each of 455 BBS routes, the area disturbed within multiple buffers away from the road was calculated and compared against the area disturbed in degree blocks and BBS strata. We found a nonlinear relationship between bias and distance from the road, suggesting forest loss and forest fires were underrepresented below 75 and 100 m, respectively. In contrast, anthropogenic disturbance was overrepresented at distances below 500 m and underrepresented thereafter. After accounting for distance from road, BBS routes were reasonably representative of the degree blocks they were within, with only a few strata showing biased representation. In general, anthropogenic disturbance is overrepresented in southern strata, and forest fires are underrepresented in almost all strata. Similar biases exist when comparing the entire road network and the subset sampled by BBS routes against the amount of disturbance within BBS strata; however, the magnitude of biases differed. Based on our results, we recommend that spatial stratification and rotating panel designs be used to spread limited BBS and off-road sampling effort in an unbiased fashion and that new BBS routes be established where sufficient road coverage exists.
Resumo:
The s–x model of microwave emission from soil and vegetation layers is widely used to estimate soil moisture content from passive microwave observations. Its application to prospective satellite-based observations aggregating several thousand square kilometres requires understanding of the effects of scene heterogeneity. The effects of heterogeneity in soil surface roughness, soil moisture, water area and vegetation density on the retrieval of soil moisture from simulated single- and multi-angle observing systems were tested. Uncertainty in water area proved the most serious problem for both systems, causing errors of a few percent in soil moisture retrieval. Single-angle retrieval was largely unaffected by the other factors studied here. Multiple-angle retrievals errors around one percent arose from heterogeneity in either soil roughness or soil moisture. Errors of a few percent were caused by vegetation heterogeneity. A simple extension of the model vegetation representation was shown to reduce this error substantially for scenes containing a range of vegetation types.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The Representative Soil Sampling Scheme (RSSS) has monitored the soil of agricultural land in England and Wales since 1969. Here we describe the first spatial analysis of the data from these surveys using geostatistics. Four years of data (1971, 1981, 1991 and 2001) were chosen to examine the nutrient (available K, Mg and P) and pH status of the soil. At each farm, four fields were sampled; however, for the earlier years, coordinates were available for the farm only and not for each field. The averaged data for each farm were used for spatial analysis and the variograms showed spatial structure even with the smaller sample size. These variograms provide a reasonable summary of the larger scale of variation identified from the data of the more intensively sampled National Soil Inventory. Maps of kriged predictions of K generally show larger values in the central and southeastern areas (above 200 mg L-1) and an increase in values in the west over time, whereas Mg is fairly stable over time. The kriged predictions of P show a decline over time, particularly in the east, and those of pH show an increase in the east over time. Disjunctive kriging was used to examine temporal changes in available P using probabilities less than given thresholds of this element. The RSSS was not designed for spatial analysis, but the results show that the data from these surveys are suitable for this purpose. The results of the spatial analysis, together with those of the statistical analyses, provide a comprehensive view of the RSSS database as a basis for monitoring the soil. These data should be taken into account when future national soil monitoring schemes are designed.
Resumo:
A simple formulation relating the L-band microwave brightness temperature detected by a passive microwave radiometer to the near surface soil moisture was developed using MICRO-SWEAT, a coupled microwave emission model and soil-vegetation-atmosphere-transfer (SVAT) scheme. This simple model provides an ideal tool with which to explore the impact of sub-pixel heterogeneity on the retrieval of soil moisture from microwave brightness temperatures. In the case of a bare soil pixel, the relationship between apparent emissivity and surface soil moisture is approximately linear, with the clay content of the soil influencing just the intercept of this relationship. It is shown that there are no errors in the retrieved soil moisture from a bare soil pixel that is heterogeneous in soil moisture and texture. However, in the case of a vegetated pixel, the slope of the relationship between apparent emissivity and surface soil moisture decreases with increasing vegetation. Therefore for a pixel that is heterogeneous in vegetation and soil moisture, errors can be introduced into the retrieved soil moisture. Generally, under moderate conditions, the retrieved soil moisture is within 3% of the actual soil moisture. Examples illustrating this discussion use data collected during the Southern Great Plains '97 Experiment (SGP97).
Resumo:
Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
To provide reliable estimates for mapping soil properties for precision agriculture requires intensive sampling and costly laboratory analyses. If the spatial structure of ancillary data, such as yield, digital information from aerial photographs, and soil electrical conductivity (EC) measurements, relates to that of soil properties they could be used to guide the sampling intensity for soil surveys. Variograins of permanent soil properties at two study sites on different parent materials were compared with each other and with those for ancillary data. The ranges of spatial dependence identified by the variograms of both sets of properties are of similar orders of magnitude for each study site, Maps of the ancillary data appear to show similar patterns of variation and these seem to relate to those of the permanent properties of the soil. Correlation analysis has confirmed these relations. Maps of kriged estimates from sub-sampled data and the original variograrns showed that the main patterns of variation were preserved when a sampling interval of less than half the average variogram range of ancillary data was used. Digital data from aerial photographs for different years and EC appear to show a more consistent relation with the soil properties than does yield. Aerial photographs, in particular those of bare soil, seem to be the most useful ancillary data and they are often cheaper to obtain than yield and EC data.
Resumo:
It has been generally accepted that the method of moments (MoM) variogram, which has been widely applied in soil science, requires about 100 sites at an appropriate interval apart to describe the variation adequately. This sample size is often larger than can be afforded for soil surveys of agricultural fields or contaminated sites. Furthermore, it might be a much larger sample size than is needed where the scale of variation is large. A possible alternative in such situations is the residual maximum likelihood (REML) variogram because fewer data appear to be required. The REML method is parametric and is considered reliable where there is trend in the data because it is based on generalized increments that filter trend out and only the covariance parameters are estimated. Previous research has suggested that fewer data are needed to compute a reliable variogram using a maximum likelihood approach such as REML, however, the results can vary according to the nature of the spatial variation. There remain issues to examine: how many fewer data can be used, how should the sampling sites be distributed over the site of interest, and how do different degrees of spatial variation affect the data requirements? The soil of four field sites of different size, physiography, parent material and soil type was sampled intensively, and MoM and REML variograms were calculated for clay content. The data were then sub-sampled to give different sample sizes and distributions of sites and the variograms were computed again. The model parameters for the sets of variograms for each site were used for cross-validation. Predictions based on REML variograms were generally more accurate than those from MoM variograms with fewer than 100 sampling sites. A sample size of around 50 sites at an appropriate distance apart, possibly determined from variograms of ancillary data, appears adequate to compute REML variograms for kriging soil properties for precision agriculture and contaminated sites. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Long-term monitoring of forest soils as part of a pan-European network to detect environmental change depends on an accurate determination of the mean of the soil properties at each monitoring event. Forest soil is known to be very variable spatially, however. A study was undertaken to explore and quantify this variability at three forest monitoring plots in Britain. Detailed soil sampling was carried out, and the data from the chemical analyses were analysed by classical statistics and geostatistics. An analysis of variance showed that there were no consistent effects from the sample sites in relation to the position of the trees. The variogram analysis showed that there was spatial dependence at each site for several variables and some varied in an apparently periodic way. An optimal sampling analysis based on the multivariate variogram for each site suggested that a bulked sample from 36 cores would reduce error to an acceptable level. Future sampling should be designed so that it neither targets nor avoids trees and disturbed ground. This can be achieved best by using a stratified random sampling design.