985 resultados para Passive devices
Resumo:
Aerodynamic shape optimisation is being increasingly utilised as a design tool in the aerospace industry. In order to provide accurate results, design optimisation methods rely on the accuracy of the underlying CFD methods applied to obtain aerodynamic forces for a given configuration. Previous studies of the authors have highlighted that the variation of the order of accuracy of the CFD solver with a fixed turbulence model affects the resulting optimised airfoil shape for a single element airfoil. The accuracy of the underlying CFD model is even more relevant in the context of high-lift configurations where an accurate prediction of flow is challenging due to the complex flow physics involving transition and flow separation phenomena. This paper explores the effect of the fidelity of CFD results for a range of turbulence models within the context of the computational design of aircraft configurations. The NLR7301 multi-element airfoil (main wing and flap) is selected as the baseline configuration, because of the wealth of experimental an computational results available for this configuration. An initial validation study is conducted in order to establish optimal mesh parameters. A bi-objective shape optimisation problem is then formulated, by trying to reveal the trade-off between lift and drag coefficients at high angles of attack. Optimisation of the airfoil shape is performed with Spalart-Allmaras, k - ω SST and k - o realisable models. The results indicate that there is consistent and complementary impact to the optimum level achieved from all the three different turbulence models considered in the presented case study. Without identifying particular superiority of any of the turbu- lence models, we can say though that each of them expressed favourable influence towards different optimality routes. These observations lead to the exploration of new avenues for future research. © 2012 AIAA.
Resumo:
Aerodynamic shape optimisation is being increasingly utilised as a design tool in the aerospace industry. In order to provide accurate results, design optimisation methods rely on the accuracy of the underlying CFD methods applied to obtain aerodynamic forces for a given configuration. Previous studies of the authors have highlighted that the variation of the order of accuracy of the CFD solver with a fixed turbulence model affects the resulting optimised airfoil shape for a single element airfoil. The accuracy of the underlying CFD model is even more relevant in the context of high-lift configurations where an accurate prediction of flow is challenging due to the complex flow physics involving transition and flow separation phenomena. This paper explores the effect of the fidelity of CFD results for a range of turbulence models within the context of the computational design of aircraft configurations. The NLR7301 multi-element airfoil (main wing and flap) is selected as the baseline configuration, because of the wealth of experimental an computational results available for this configuration. An initial validation study is conducted in order to establish optimal mesh parameters. A bi-objective shape optimisation problem is then formulated, by trying to reveal the trade-off between lift and drag coefficients at high angles of attack. Optimisation of the airfoil shape is performed with Spalart-Allmaras, k - ω SST and k - ε realisable models. The results indicate that there is consistent and complementary impact to the optimum level achieved from all the three different turbulence models considered in the presented case study. Without identifying particular superiority of any of the turbu- lence models, we can say though that each of them expressed favourable influence towards different optimality routes. These observations lead to the exploration of new avenues for future research. © 2012 by the authors.
Resumo:
This study proposes a new product development (NPD) model that aims to improve the effectiveness of innovative NPD in the medical devices. By adopting open innovation theory and applying an in-depth investigation methodology, this paper proposes a knowledge cluster that improves the integration of interdisciplinary human resources and enhances the acquirement of innovative technologies. A knowledge cluster approach helps gather, organise, synthesise, and accumulate knowledge in order to become the impetus for innovation. Although enterprises are no longer the principals of research and development, they should still be capable of integrating professional physicians, external groups, and individuals through the knowledge cluster platform. However, in order to support an effective NPD model, enterprises should provide adequate incentives and trust to external individuals or groups willing to contribute their expertise and knowledge to this knowledge cluster platform. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
Recently, it has been shown that improved wireless communication coverage can be achieved by employing distributed antenna system (DAS). The DAS RFID system is based on a novel technique whereby two or more spatially separated transmit and receive antennas are used to enable greatly enhanced tag detection performance over longer distances using antenna diversity combined with frequency and phase hopping. In this paper, we present a detection reliability evaluation of the DAS RFID in a typical lab environment. We conduct an extensive experimental analysis of passive RFID tag detection with different locations and orientations. The tag received signal strengths corresponding to various tag locations on one of the six different sides of a cube, and for different reader transmit power are collected and analyzed in this study.
Resumo:
We report 4ps and 8ps pulse generation from a two-section monolithic InGaN/GaN laser by hybrid and passive mode-locking, respectively. Pulse trains at a repetition rate of 28.6GHz and an emission wavelength of 422nm are generated. © 2013 The Optical Society.
Resumo:
Mechanical spring-damper network performance can often be improved by the inclusion of a third passive component called the inerter. This ideally has the characteristic that the force at the terminals is directly proportional to the relative acceleration between them. The fluid inerter presented here has advantages over mechanical ball screw devices in terms of simplicity of design. Furthermore, it can be readily adapted to implement various passive network layouts. Variable orifices and valves can be included to provide series or parallel damping. Test data from prototypes with helical tubes have been compared with models to investigate parasitic damping effects of the fluid. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The effect of the bandgap narrowing (BGN) on performance of power devices is investigated in detail in this paper. The analysis reveals that the change in the energy band structure caused by BGN can strongly affect the conductivity modulation of the bipolar devices resulting in a completely different performance. This is due to the modified injection efficiency under high-level injection conditions. Using a comprehensive analysis of the injection efficiency in a p-n junction, an analytical model for this phenomenon is developed. BGN model tuning has been proved to be essential in accurately predicting the performance of a lateral insulated-gate bipolar transistor (IGBT). Other devices such as p-i-n diodes or punch-through IGBTs are significantly affected by the BGN, while others, such as field-stop IGBTs or power MOSFETs, are only marginally affected. © 2013 IEEE.
Resumo:
In this paper, we develop a linear technique that predicts how the stability of a thermo-acoustic system changes due to the action of a generic passive feedback device or a generic change in the base state. From this, one can calculate the passive device or base state change that most stabilizes the system. This theoretical framework, based on adjoint equations, is applied to two types of Rijke tube. The first contains an electrically-heated hot wire and the second contains a diffusion flame. Both heat sources are assumed to be compact so that the acoustic and heat release models can be decoupled. We find that the most effective passive control device is an adiabatic mesh placed at the downstream end of the Rijke tube. We also investigate the effects of a second hot wire and a local variation of the cross-sectional area but find that both affect the frequency more than the growth rate. This application of adjoint sensitivity analysis opens up new possibilities for the passive control of thermo-acoustic oscillations. For example, the influence of base state changes can be combined with other constraints, such as that the total heat release rate remains constant, in order to show how an unstable thermo-acoustic system should be changed in order to make it stable. Copyright © 2013 by ASME.
Resumo:
A multi-objective design optimisation study has been carried out with the objectives to improve the overall efficiency of the device and to reduce the fuel consumption for the proposed micro-scale combustor design configuration. In a previous study we identified the topology of the combustion chamber that produced improved behaviour of the device in terms of the above design criteria. We now extend our design approach, and we propose a new configuration by the addition of a micro-cooling channel that will improve the thermal behaviour of the design as previously suggested in literature. Our initial numerical results revealed an improvement of 2.6% in the combustion efficiency when we applied the micro-cooling channel to an optimum design configuration we identified from our earlier multi-objective optimisation study, and under the same operating conditions. The computational modelling of the combustion process is implemented in the commercial computational fluid dynamics package ANSYS-CFX using Finite Rate Chemistry and a single step hydrogen-air reaction. With this model we try to balance good accuracy of the combustion solution and at the same time practicality within the context of an optimisation process. The whole design system comprises also the ANSYS-ICEM CFD package for the automatic geometry and mesh generation and the Multi-Objective Tabu Search algorithm for the design space exploration. We model the design problem with 5 geometrical parameters and 3 operational parameters subject to 5 design constraints that secure practicality and feasibility of the new optimum design configurations. The final results demonstrate the reliability and efficiency of the developed computational design system and most importantly we assess the practicality and manufacturability of the revealed optimum design configurations of micro-combustor devices. Copyright © 2013 by ASME.
Resumo:
Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.