1000 resultados para Particle-hole asymmetry
Resumo:
Part I
Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.
The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.
Part II
A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.
The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.
Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.
Solar flare particle propagation--comparison of a new analytic solution with spacecraft measurements
Resumo:
A new analytic solution has been obtained to the complete Fokker-Planck equation for solar flare particle propagation including the effects of convection, energy-change, corotation, and diffusion with ĸr = constant and ĸƟ ∝ r2. It is assumed that the particles are injected impulsively at a single point in space, and that a boundary exists beyond which the particles are free to escape. Several solar flare particle events have been observed with the Caltech Solar and Galactic Cosmic Ray Experiment aboard OGO-6. Detailed comparisons of the predictions of the new solution with these observations of 1-70 MeV protons show that the model adequately describes both the rise and decay times, indicating that ĸr = constant is a better description of conditions inside 1 AU than is ĸr ∝ r. With an outer boundary at 2.7 AU, a solar wind velocity of 400 km/sec, and a radial diffusion coefficient ĸr ≈ 2-8 x 1020 cm2/sec, the model gives reasonable fits to the time-profile of 1-10 MeV protons from "classical" flare-associated events. It is not necessary to invoke a scatter-free region near the sun in order to reproduce the fast rise times observed for directly-connected events. The new solution also yields a time-evolution for the vector anisotropy which agrees well with previously reported observations.
In addition, the new solution predicts that, during the decay phase, a typical convex spectral feature initially at energy To will move to lower energies at an exponential rate given by TKINK = Toexp(-t/ƬKINK). Assuming adiabatic deceleration and a boundary at 2.7 AU, the solution yields ƬKINK ≈ 100h, which is faster than the measured ~200h time constant and slower than the adiabatic rate of ~78h at 1 AU. Two possible explanations are that the boundary is at ~5 AU or that some other energy-change process is operative.
Resumo:
Neste trabalho, foi desenvolvido um simulador numérico baseado no método livre de malhas Smoothed Particle Hydrodynamics (SPH) para a resolução de escoamentos de fluidos newtonianos incompressíveis. Diferentemente da maioria das versões existentes deste método, o código numérico faz uso de uma técnica iterativa na determinação do campo de pressões. Este procedimento emprega a forma diferencial de uma equação de estado para um fluido compressível e a equação da continuidade a fim de que a correção da pressão seja determinada. Uma versão paralelizada do simulador numérico foi implementada usando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA) da NVIDIA Corporation. Foram simulados três problemas, o problema unidimensional do escoamento de Couette e os problemas bidimensionais do escoamento no interior de uma Cavidade (Shear Driven Cavity Problem) e da Quebra de Barragem (Dambreak).
Resumo:
Este estudo teve como objetivo principal caracterizar os padrões de distribuição do material particulado em suspensão ao longo da baía de Sepetiba, associando as variabilidades espaciais e temporais com ciclos de maré. Além disso, o estudo também avalia a utilização de equipamentos acústicos como ferramentas à estimativa das concentrações de material particulado em suspensão. A aquisição de dados foi realizada num total de sete campanhas realizadas entre novembro de 2010 e dezembro de 2011. Sete estações foram posicionadas nas proximidades do canal principal de acesso à baía, ao longo de um transecto que se estende do seu interior até sua desembocadura. As sete campanhas amostrais se distribuem em duas séries longas, de 13 e 25 horas, de aquisição em um ponto fixo, e cinco amostragens ao longo das estações. A aquisição de dados envolve: coleta de amostras de água, utilizadas nas estimativas das concentrações de material particulado; coleta de sedimentos de fundo para caracterização granulométrica das estações amostradas; perfis de parâmetros físico-químicos; dados de correntômetria adquiridos junto ao fundo. O processamento das amostras de água e sedimentos foi realizado no laboratório de Geologia Marinha da Faculdade de Oceanografia da Universidade do Estado do Rio de Janeiro. As concentrações de material particulado em suspensão foram utilizadas na calibração de sensores acústicos e óticos, permitindo uma avaliação espaço-temporal mais detalhada dos padrões de distribuição junto ao fundo e ao longo da coluna dágua. Os dados observados permitiram identificar que as maiores concentrações de material particulado em suspensão ocorrem em condições de maré enchente, e estão associadas à assimetria de maré. A baía pode ser dividida em dois setores: um na porção mais interna, onde se observou maior influência do aporte fluvial, onde as concentrações de material particulado em suspensão respondem à propagação da pluma do canal de São Francisco; e outro que se estende da porção central até sua desembocadura, onde predomina o domínio marinho, com influência de eventos oriundos da plataforma continental. Também pode ser identificada a influência do fenômeno La Niña, que provavelmente foi responsável por: altas salinidades encontradas no interior da baía e ocorrência da Água Central do Atlântico Sul à baixas profundidades. Quanto à utilização de equipamentos acústicos nas estimativas das concentrações de material particulado, os dados se demonstraram ricos em detalhes, que permitiram avaliar o comportamento do material particulado junto ao fundo frente a diferentes condições de maré, turbulência e incidência de oscilações.