940 resultados para Particle-Reinforced Composite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plant regeneration method with cell suspension cultures of banana, and the effect of biobalistic on regeneration potential are described in this report. Somatic embryos of banana were obtained from indirect embryogenesis of male inflorescence of banana cultivar Maçã (AAB group). Part of the calluses formed (40%) showed embryogenic characteristics (nonfriable, compact and yellow color). The cell suspension, originated from embryogenic calluses, contained clusters of small tightly packed cells with dense cytoplasms, relatively large nuclei and very dense nucleoli. After four months of culture, somatic embryos started to regenerate. The maximum number of regenerated plants was observed between 45 and 60 days after embryo formation.In the first experiment, 401 plants were regenerated from approximately 10 mL of packed cells. In the second experiment, 399 plants were regenerated from a cell suspension six months older than that of the first experiment. Cell transformation using particle bombardment with three different plasmid constructions, containing the uid-A gene, resulted in a strong GUS expression five days after bombardment; however, plant regeneration from bombarded cells was much lower than nonbombarded ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Transportation initiated this research to evaluate the reliability, benefit and application of the corrosion detection device. Through field testing prior to repair projects and inspection at the time of repair, the device was shown to be reliable. With the reliability established, twelve additional devices were purchased so that this evaluation procedure could be used routinely on all repair projects. The corrosion detection device was established as a means for determining concrete removal for repair. Removal of the concrete down to the top reinforcing steel is required for all areas exhibiting electrical potentials greater than 0.45 Volt. It was determined that the corrosion detection device was not applicable to membrane testing. The corrosion detection device has been used to evaluate corrosion of reinforcing steel in continuously reinforced concrete pavement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the second part of the final report submitted to the Iowa Department of Transportation. Part 1 contained a comparison of unaged fiber composite and steel dowels and derivation of the appropriate theoretical model for analyzing the results. Part 2 of this final report covers the theoretical and experimental models for accelerated aging of fiber composite reinforcing bars and dowels cast in a concrete environment. Part 2 contains results from testing of unaged and aged fiber composite dowels and steel dowels, in addition to unaged and aged fiber composite reinforcing bars. Additional tests have been performed on unaged dowels (both steel and fibercomposite) to verify results from Part 1 and to keep the testing program consistent. Slight modifications have been made to the dowel specimens presented in Part 1. These modifications are noted in the Section 3.4 of this report. The flexural modulus of elasticity for the FC dowel bar given in Part 1 of the final report (Table 3. 2) was for the incorrect structural shape (non-circular cross section). The value is corrected and given in Part 2 of the final report (Table 3.4 for the.modulus of elasticity supplied by the manufacturer, and Tables 3. 5 and 3. 6 for experimentally determined modulus of elasticities) • The value in Part 1 was not used for any analysis of the FC dowel bars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transverse joints are placed in portland cement concrete pavements to control the development of random cracking due to stresses induced by moisture and thermal gradients and restrained slab movement. These joints are strengthened through the use of load transfer devices, typically dowel bars, designed to transfer load across the joint from one pavement slab to the next. Epoxy coated steel bars are the materials of choice at the present time, but have experienced some difficulties with resistance to corrosion from deicing salts. The research project investigated the use of alternative materials, dowel size and spacing to determine the benefits and limitations of each material. In this project two types of fiber composite materials, stainless steel solid dowels and epoxy coated dowels were tested for five years in side by side installation in a portion of U.S. 65 near Des Moines, Iowa, between 1997 and 2002. The work was directed at analyzing the load transfer characteristics of 8-in. vs. 12-in. spacing of the dowels and the alternative dowel materials, fiber composite (1.5- and 1.88-in. diameter) and stainless steel (1.5-in. diameter), compared to typical 1.5-in. diameter epoxy-coated steel dowels placed on 12-in. spacing. Data were collected biannually within each series of joints and variables in terms of load transfer in each lane (outer wheel path), visual distress, joint openings, and faulting in each wheel path. After five years of performance the following observations were made from the data collected. Each of the dowel materials is performing equally in terms of load transfer, joint movement and faulting. Stainless steel dowels are providing load transfer performance equal to or greater than epoxy-coated steel dowels at the end of five years. Fiber reinforced polymer (FRP) dowels of the sizes and materials tested should be spaced no greater than 8 in. apart to achieve comparable performance to epoxy coated dowels. No evidence of deterioration due to road salts was identified on any of the products tested. The relatively high cost of stainless steel solid and FRP dowels was a limitation at the time of this study conclusion. Work is continuing with the subject materials in laboratory studies to determine the proper shape, spacing, chemical composition and testing specification to make the FRP and stainless (clad or solid) dowels a viable alternative joint load transfer material for long lasting portland cement concrete pavements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to develop a genetic transformation system for tropical maize genotypes via particle bombardment of immature zygotic embryos. Particle bombardment was carried out using a genetic construct with bar and uidA genes under control of CaMV35S promoter. The best conditions to transform maize tropical inbred lines L3 and L1345 were obtained when immature embryos were cultivated, prior to the bombardment, in higher osmolarity during 4 hours and bombarded at an acceleration helium gas pressure of 1,100 psi, two shots per plate, and a microcarrier flying distance of 6.6 cm. Transformation frequencies obtained using these conditions ranged from 0.9 to 2.31%. Integration of foreign genes into the genome of maize plants was confirmed by Southern blot analysis as well as bar and uidA gene expressions. The maize genetic transformation protocol developed in this work will possibly improve the efficiency to produce new transgenic tropical maize lines expressing desirable agronomic characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many state, county, and local agencies are faced with deteriorating bridge infrastructure composed of a large percentage of relatively short to medium span bridges. In many cases, these older structures are rolled or welded longitudinal steel stringers acting compositely with a reinforced concrete deck. Most of these bridges, although still in service, need some level of strengthening due to increases in legal live loads or loss of capacity due to deterioration. Although these bridges are overstressed in most instances, they do not warrant replacement; thus, structurally efficient but cost-effective means of strengthening needs to be employed. In the past, the use of bolted steel cover plates or angles was a common retrofit option for strengthening such bridges. However, the time and labor involved to attach such a strengthening system can sometimes be prohibitive. This project was funded through the Federal Highway Administration’s Innovative Bridge Research and Construction program. The goal is to retrofit an existing structurally deficient, three-span continuous steel stringer bridge using an innovative technique that involves the application of post-tensioning forces; the post-tensioning forces were applied using fiber reinforced polymer post-tensioning bars. When compared to other strengthening methods, the use of carbon fiber reinforced polymer composite materials is very appealing in that they are highly resistant to corrosion, have a low weight, and have a high tensile strength. Before the post-tensioning system was installed, a diagnostic load test was conducted on the subject bridge to establish a baseline behavior of the unstrengthened bridge. During the process of installing the post-tensioning hardware and stressing the system, both the bridge and the post-tensioning system were monitored. The installation of the hardware was followed by a follow-up diagnostic load test to assess the effectiveness of the post-tensioning strengthening system. Additional load tests were performed over a period of two years to identify any changes in the strengthening system with time. Laboratory testing of several typical carbon fiber reinforced polymer bar specimens was also conducted to more thoroughly understand their behavior. This report documents the design, installation, and field testing of the strengthening system and bridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter presents advanced classification methods for very high resolution images. Efficient multisource information, both spectral and spatial, is exploited through the use of composite kernels in support vector machines. Weighted summations of kernels accounting for separate sources of spectral and spatial information are analyzed and compared to classical approaches such as pure spectral classification or stacked approaches using all the features in a single vector. Model selection problems are addressed, as well as the importance of the different kernels in the weighted summation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well developed experimental procedures currently exist for retrieving and analyzing particle evidence from hands of individuals suspected of being associated with the discharge of a firearm. Although analytical approaches (e.g. automated Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDS) microanalysis) allow the determination of the presence of elements typically found in gunshot residue (GSR) particles, such analyses provide no information about a given particle's actual source. Possible origins for which scientists may need to account for are a primary exposure to the discharge of a firearm or a secondary transfer due to a contaminated environment. In order to approach such sources of uncertainty in the context of evidential assessment, this paper studies the construction and practical implementation of graphical probability models (i.e. Bayesian networks). These can assist forensic scientists in making the issue tractable within a probabilistic perspective. The proposed models focus on likelihood ratio calculations at various levels of detail as well as case pre-assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General equations are presented for predicting loss of prestress and camber of both composite and non- composite prestressed concrete structures. Continuous time functins of all parameters needed to solve the equations are given, and sample results included. Computed prestress loss and camber are compared with experimental data for normal weight and lightweight concrete. Methods are also presented for predicting the effect of non-prestressed tension steel in reducing time-dependent loss of prestress and camber, and for the determination of short-time deflections of uncracked and cracked prestressed members. Comparisons with experimental results are indicated for these partially prestressed methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of numerous applications of carbon nanofibers (CNFs) in a variety of fields, the potential release of airborne CNF during their special application, which could lead to workers or end-users exposure, has not been well investigated. In this study, the potential release of CNF from an organic vapour respirator cartridge was evaluated by carbon analysis and microscopy analysis. The cartridge consisted of an AC (Activated Carbon)/CNF composite adsorbent and different types of particulate filters. The composite adsorbent CNF were prepared by chemical vapour deposition (CVD). Air was passed through the prepared cartridge for 12 hours at 12 l/min and particles were collected on sampling filters suitable for measuring organic and elemental carbon (OC/EC) by carbon analysis based on the NIOSH 5040 method. Breakthrough of CNFs was also checked by scanning and transmission electron microscopy (SEM/TEM). This study found only minimal amounts of released elemental carbon while passing the air through the cartridge. Meanwhile TEM photos showed a few CNF structures for AC/CNF composite adsorbents which were not in the critical range in terms of length, aspect ratio, or number. [Authors]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1957, the Iowa State Highway Commission, with financial assistance from the aluminum industry, constructed a 220-ft (67-m) long, four-span continuous, aluminum girder bridge to carry traffic on Clive Road (86th Street) over Interstate 80 near Des Moines, Iowa. The bridge had four, welded I-shape girders that were fabricated in pairs with welded diaphragms between an exterior and an interior girder. The interior diaphragms between the girder pairs were bolted to girder brackets. A composite, reinforced concrete deck served as the roadway surface. The bridge, which had performed successfully for about 35 years of service, was removed in the fall of 1993 to make way for an interchange at the same location. Prior to the bridge demolition, load tests were conducted to monitor girder and diaphragm bending strains and deflections in the northern end span. Fatigue testing of the aluminum girders that were removed from the end spans were conducted by applying constant-amplitude, cyclic loads. These tests established the fatigue strength of an existing, welded, flange-splice detail and added, welded, flange-cover plates and horizontal web plate attachment details. This part, Part 2, of the final report focuses on the fatigue tests of the aluminum girder sections that were removed from the bridge and on the analysis of the experimental data to establish the fatigue strength of full-size specimens. Seventeen fatigue fractures that were classified as Category E weld details developed in the seven girder test specimens. Linear regression analyses of the fatigue test results established both nominal and experimental stress-range versus load cycle relationships (SN curves) for the fatigue strength of fillet-welded connections. The nominal strength SN curve obtained by this research essentially matched the SN curve for Category E aluminum weldments given in the AASHTO LRFD specifications. All of the Category E fatigue fractures that developed in the girder test specimens satisfied the allowable SN relationship specified by the fatigue provisions of the Aluminum Association. The lower-bound strength line that was set at two standard deviations below the least squares regression line through the fatigue fracture data points related well with the Aluminum Association SN curve. The results from the experimental tests of this research have provided additional information regarding behavioral characteristics of full-size, aluminum members and have confirmed that aluminum has the strength properties needed for highway bridge girders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background, aim, and scope A coupled Life Cycle Costing and life cycle assessment has been performed for car-bodies of the Korean Tilting Train eXpress (TTX) project using European and Korean databases, with the objective of assessing environmental and cost performance to aid materials and process selection. More specifically, the potential of polymer composite car-body structures for the Korean Tilting Train eXpress (TTX) has been investigated. Materials and methods This assessment includes the cost of both carriage manufacturing and use phases, coupled with the life cycle environmental impacts of all stages from raw material production, through carriage manufacture and use, to end-of-life scenarios. Metallic carriages were compared with two composite options: hybrid steel-composite and full-composite carriages. The total planned production for this regional Korean train was 440 cars, with an annual production volume of 80 cars. Results and discussion The coupled analyses were used to generate plots of cost versus energy consumption and environmental impacts. The results show that the raw material and manufacturing phase costs are approximately half of the total life cycle costs, whilst their environmental impact is relatively insignificant (3-8%). The use phase of the car-body has the largest environmental impact for all scenarios, with near negligible contributions from the other phases. Since steel rail carriages weigh more (27-51%), the use phase cost is correspondingly higher, resulting in both the greatest environmental impact and the highest life cycle cost. Compared to the steel scenario, the hybrid composite variant has a lower life cycle cost (16%) and a lower environmental impact (26%). Though the full composite rail carriage may have the highest manufacturing cost, it results in the lowest total life cycle costs and lowest environmental impacts. Conclusions and recommendations This coupled cost and life cycle assessment showed that the full composite variant was the optimum solution. This case study showed that coupling of technical cost models with life cycle assessment offers an efficient route to accurately evaluate economic and environmental performance in a consistent way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.