953 resultados para Paraventricular nucleus of hypothalamus


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tonic immobility (TI) is an innate defensive behavior characterized by a state of physical inactivity and diminished responsiveness to environmental stimuli. Behavioral adaptations to changes in the external and internal milieu involve complex neuronal network activity and a large number of chemical neurotransmitters. The TI response is thought to be influenced by serotonin (5-HT) activity in the central nervous system (CNS) of vertebrates, but the neuronal groups involved in the mechanisms underlying this behavior are poorly understood. Owing to its extensive afferents and efferents, the dorsal raphe nucleus (DRN) has been implicated in a great variety of physiological and behavioral functions. in the current study, we investigated the influence of serotonergic 5-HT(1A) and 5-HT(2) receptor activity within the DRN on the modulation of TI behavior in the guinea pig. Microinjection of a 5-HT(1A) receptor agonist (8-OH-DPAT, 0.01 and 0.1 mu g) decreased TI behavior, an effect blocked by pretreatment with WAY-100635 (0.033 mu g), a 5-HT(1A) antagonist. In contrast, activation of 5-HT(2) receptors within the DRN (alpha-methyl-5-HT, 0.5 mu g) increased the TI duration, and this effect could be reversed by pretreatment with an ineffective dose (0.01 mu g) of ketanserine. Since the 5-HT(1A) and 5-HT(2) agonists decreased and increased, respectively, the duration of TI, different serotonin receptor subtypes may play distinct roles in the modulation of TI in the guinea pig. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In vitro, nitric oxide (NO) inhibits the firing rate of magnocellular neurosecretory cells (MNCs) of hypothalamic supraoptic and paraventricular nuclei and this effect has been attributed to GABAergic activation. However, little is known about the direct effects of NO in MNCs. We used the patch-clamp technique to verify the effect Of L-arginine, a precursor for NO synthesis, and N-omega-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of NOS, on spontaneous electrical activity of MNCs after glutamatergic and GABAergic blockade in Wistar rat brain slices. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 mu M) and DL-2-amino-5-phosphonovaleric acid (DL-AP5) (30 mu M) were used to block postsynaptic glutamatergic currents, and picrotoxin (30 mu M) and saclofen (30 mu M) to block ionotropic and metabotropic postsynaptic GABAergic currents. Under these conditions, 500 mu M L-arginine decreased the firing rate from 3.7 +/- 0.6 Hz to 1.3 +/- 0.3 Hz. Conversely, 100 mu M L-NAME increased the firing rate from 3.0 +/- 0.3 Hz to 5.8 +/- 0.4 Hz. All points histogram analysis showed changes in resting potential from -58.1 +/- 0.8 mV to -62.2 +/- 1.1 mV in the presence of L-arginine and from -59.8 +/- 0.7 mV to -56.9 +/- 0.8 mV by L-NAME. Despite the nitrergic modulator effect on firing rate, some MNCs had no significant changes in their resting potential. In those neurons, hyperpolarizing after-potential (HAP) amplitude increased from 12.4 +/- 1.2 mV to 16.8 +/- 0.7 mV by L-arginine, but without significant changes by L-NAME treatment. To our knowledge, this is the first demonstration that NO can inhibit MNCs independent of GABAergic inputs. Further, our results point to HAP as a potential site for nitrergic modulation. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of purinergic and nitrergic mechanisms was evaluated in the caudal nucleus tractus solitarii (cNTS) using awake animals and brainstem slices. In awake animals, ATP (1.25 nmol/50 nL) was microinjected into the cNTS before and after the microinjection of a selective neuronal nitric oxide synthase (nNOS) inhibitor N-propyl-L-arginine (NPLA, 3 pmoles/50 nL, n=8) or vehicle (saline, n=4), and cardiovascular and ventilatory parameters were recorded. In brainstem slices from a distinct group of rats, the effects of ATP on the NO concentration in the cNTS using the fluorescent dye DAF-2 DA were evaluated. For this purpose brainstem slices (150 pm) containing the cNTS were pre-incubated with ATP (500 mu M; n=8) before and during DAF-2 DA loading. Microinjection of ATP into the cNTS increases the arterial pressure (AP), respiratory frequency (f(R)) and minute ventilation (V(E)), which were significantly reduced by pretreatment with N-PLA, a selective nNOS inhibitor (AP: 39 +/- 3 vs 16 +/- 14 mm Hg; f(R): 75 +/- 14 vs 4 +/- 3 cpm; V(E): 909 159 vs 77 39 mL kg(-1) m(-1)). The effects of ATP in the cNTS were not affected by microinjection of saline. ATP significantly increased the NO fluorescence in the cNTS (62 +/- 7 vs 101 +/- 10 AU). The data show that in the cNTS: a) the NO production is increased by ATP; b) NO formation by nNOS is involved in the cardiovascular and ventilatory responses to microinjection of ATP. Taken together, these data suggest an interaction of purinergic and nitrergic mechanisms in the cNTS. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A secretory surge of prolactin occurs on the afternoon of oestrous in cycling rats. Although prolactin is regulated by ovarian steroids, plasma oestradiol and progesterone levels do not vary during oestrous. Because prolactin release is tonically inhibited by hypothalamic dopamine and modulated by dopamine transmission in the preoptic area (POA), the present study aimed to evaluate whether oestrogen receptor (ER)-alpha and progestin receptor (PR) expression in the dopaminergic neurones of arcuate (ARC), periventricular, anteroventral periventricular (AVPe) and ventromedial preoptic (VMPO) nuclei changes during the day of oestrous. Cycling rats were perfused every 2 h from 10-20 h on oestrous. Brain sections were double-labelled to ER alpha or PR and tyrosine hydroxylase (TH). The number of TH-immunoreactive (ir) neurones did not vary significantly in any area evaluated. ER alpha expression in TH-ir neurones increased at 14 and 16 h in the rostral-ARC and dorsomedial-ARC, 14 h in the caudal-ARC and 16 h in the VMPO, whereas it was unaltered in the ventrolateral-ARC, periventricular and AVPe. PR expression in TH-ir neurones of the periventricular and rostral, dorsomedial, ventrolateral and caudal-ARC decreased transitorily during the afternoon, showing the lowest levels between 14 and 16 h; but it did not vary in the AVPe and VMPO. Plasma oestradiol and progesterone concentrations were low and unaltered during oestrous, indicating that the changes in receptors expression were probably not due to variation in ligand levels. Thus, our data suggest that variations in ER alpha and PR expression may promote changes in the activity of medial basal hypothalamus and POA dopaminergic neurones, even under unaltered secretion of ovarian steroids, which could facilitate the occurrence and modulate the magnitude of the prolactin surge on oestrous.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thirty-two pouch-young tammar wallabies were used to discover the generators of the auditory brainstem response (ABR) during development by the use of simultaneous ABR and focal brainstem recordings. A click response from the auditory nerve root (ANR) in the wallaby was recorded from postnatal day (PND) 101, when no central auditory station was functional, and coincided with the ABR, a simple positive wave. The response of the cochlear nucleus (CN) was detected from PND 110, when the ABR had developed 1 positive and 1 negative peak. The dominant component of the focal ANR response, the N-1 wave, coincided with the first half of the ABR P wave, and that of the focal CN response, the N-1 wave, coincided with the later two thirds. In older animals, the ANR response coincided with the ABR's N-1, wave, while the CN response coincided with the ABR's P-2, N-2 and P-3 waves, with its contribution to the ABR P-2 dominant. The protracted development of the marsupial auditory system which facilitated these correlations makes the tammar wallaby a particularly suitable model. Copyright (C) 2001 S. Karger AG, Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The distribution and cellular morphology of serotonergic neurons in the brain of two species of monotremes are described. Three clusters of serotonergic neurons were found: a hypothalamic cluster, a cluster in the rostral brainstem and a cluster in the caudal brainstem. Those in the hypothalamus consisted of two groups, the periventricular hypothalamic organ and the infundibular recess, that were intimately associated with the ependymal wall of the third ventricle. Within the rostral brainstem cluster, three distinct divisions were found: the dorsal raphe nucleus (with four subdivisions), the median raphe nucleus and the cells of the supralemniscal region. The dorsal raphe was within and adjacent to the periaqueductal gray matter, the median raphe was associated with the midline ventral to the dorsal raphe, and the cells of the supralemniscal region were in the tegmentum lateral to the median raphe and ventral to the dorsal raphe. The caudal cluster consisted of three divisions: the raphe obscurus nucleus, the raphe pallidus nucleus and the raphe magnus nucleus. The raphe obscurus nucleus was associated with the dorsal midline at the caudal-most part of the medulla oblongata. The raphe pallidus nucleus was found at the ventral midline of the medulla around the inferior olive. Raphe magnus was associated with the midline of the medulla and was found rostral to both the raphe obscurus and raphe pallidus. The results of our study are compared in an evolutionary context with those reported for other mammals and reptiles. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Omithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: The epilepsy associated with hypothalamic hamartomas (HHs) has typical clinical, electrophysiologic, and behavioral manifestations refractory to drug therapy and with unfavorable evolution. It is well known that only sessile lesions produce epilepsy, but no correlation has been established between the different types of sessile hamartomas and the diverse manifestations of the epilepsy. We correlate anatomic details of the hamartoma and the clinical and neurophysiologic manifestations of the associated epilepsy. METHODS: HHs of seven patients with epilepsy (ages 2- 25 years) were classified as to lateralization and connection to the anteroposterior axis of the hypothalamus by using high-resolution brain magnetic resonance imaging. We correlated the anatomic classification with the clinical and neurophysiologic manifestations of the epilepsy as evaluated in long-term (24 h) video-EEG recordings. RESULTS: HHs ranged in size from 0.4 to 2.6 cc, with complete lateralization in six of seven patients. Ictal manifestations showed good correlation with the lobar involvement of ictal/interictal EEGs. These manifestations suggest the existence of two types of cortical involvement, one associated with the temporal lobe, produced by hamartomas connected to the posterior hypothalamus (mamillary bodies), and the other associated with the frontal lobe, seen in lesions connecting to the middle hypothalamus. CONCLUSIONS: A consistent clinical and neurophysiologic pattern of either temporal or frontal lobe cortical secondary involvement was found in the patients of our series. It depends on whether the hamartoma connects to the mamillary bodies (temporal lobe cases) or whether it connects to the medial hypothalamus (frontal lobe cases).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2010

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nuclei bind yeast vacuoles via nucleus-vacuole (NV) junctions. Under nutrient restriction, NV junctions invaginate and release vesicles filled with nuclear material into vacuoles, resulting in piecemeal microautophagy of the nucleus (PMN). We show that the electrochemical gradient across the vacuolar membrane promotes invagination of NV junctions. Existing invaginations persist independently of the gradient, but final release of PMN vesicles requires again V-ATPase activity. We find that NV junctions form a diffusion barrier on the vacuolar membrane that excludes V-ATPase but is enriched in the VTC complex and accessible to other membrane-integral proteins. V-ATPase exclusion depends on the NV junction proteins Nvj1p,Vac8p, and the electrochemical gradient. It also depends on factors of lipid metabolism, such as the oxysterol binding protein Osh1p and the enoyl-CoA reductase Tsc13p, which are enriched in NV junctions, and on Lag1p and Fen1p. Our observations suggest that NV junctions form in two separable steps: Nvj1p and Vac8p suffice to establish contact between the two membranes. The electrochemical potential and lipid-modifying enzymes are needed to establish the vacuolar diffusion barrier, invaginate NV junctions, and form PMN vesicles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Subthalamic nucleus deep brain stimulation (STN-DBS) is a recognized treatment for advanced and severe forms of Parkinson's Disease. The procedure improves motor signs and often allows a reduction of the medication. The impact of the procedure on cognitive and neuropsychiatric signs of the disease is more debated and there is an international consensus for the need of a multidisciplinary evaluation of patients undergoing such programs, including a neuropsychiatric assessment. We present a review of the literature as well as the experience at our centre focused on the short and long term outcome on mood following STN-DBS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) in the hypothalamus, which is thought to set the phase of slave oscillators in virtually all body cells. However, due to the lack of appropriate in vivo recording technologies, it has been difficult to study how the SCN synchronizes oscillators in peripheral tissues. Here we describe the real-time recording of bioluminescence emitted by hepatocytes expressing circadian luciferase reporter genes in freely moving mice. The technology employs a device dubbed RT-Biolumicorder, which consists of a cylindrical cage with reflecting conical walls that channel photons toward a photomultiplier tube. The monitoring of circadian liver gene expression revealed that hepatocyte oscillators of SCN-lesioned mice synchronized more rapidly to feeding cycles than hepatocyte clocks of intact mice. Hence, the SCN uses signaling pathways that counteract those of feeding rhythms when their phase is in conflict with its own phase.