958 resultados para Parallel programming (computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this thesis was to build the Guitar Application ToolKit (GATK), a series of applications used to expand the sonic capabilities of the acoustic/electric stereo guitar. Furthermore, the goal of the GATK was to extend improvisational capabilities and the compositional techniques generated by this innovative instrument. ^ During the GATK creation process, the current production guitar techniques and overall sonic result were enhanced by planning and implementing a personalized electro-acoustic performance set up, designing custom-made performance interfaces, creating interactive compositional strategies, crafting non-standardized sounds, and controlling various music parameters in real-time using the Max/MSP programming environment. ^ This was the fast thesis project of its kind. It is expected that this thesis will be useful as a reference paper for electronic musicians and music technology students; as a product demonstration for companies that manufacture the relevant software; and as a personal portfolio for future technology related jobs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software development is an extremely complex process, during which human errors are introduced and result in faulty software systems. It is highly desirable and important that these errors can be prevented and detected as early as possible. Software architecture design is a high-level system description, which embodies many system features and properties that are eventually implemented in the final operational system. Therefore, methods for modeling and analyzing software architecture descriptions can help prevent and reveal human errors and thus improve software quality. Furthermore, if an analyzed software architecture description can be used to derive a partial software implementation, especially when the derivation can be automated, significant benefits can be gained with regard to both the system quality and productivity. This dissertation proposes a framework for an integrated analysis on both of the design and implementation. To ensure the desirable properties of the architecture model, we apply formal verification by using the model checking technique. To ensure the desirable properties of the implementation, we develop a methodology and the associated tool to translate an architecture specification into an implementation written in the combination of Arch-Java/Java/AspectJ programming languages. The translation is semi-automatic so that many manual programming errors can be prevented. Furthermore, the translation inserting monitoring code into the implementation such that runtime verification can be performed, this provides additional assurance for the quality of the implementation. Moreover, validations for the translations from architecture model to program are provided. Finally, several case studies are experimented and presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed applications are exposed as reusable components that are dynamically discovered and integrated to create new applications. These new applications, in the form of aggregate services, are vulnerable to failure due to the autonomous and distributed nature of their integrated components. This vulnerability creates the need for adaptability in aggregate services. The need for adaptation is accentuated for complex long-running applications as is found in scientific Grid computing, where distributed computing nodes may participate to solve computation and data-intensive problems. Such applications integrate services for coordinated problem solving in areas such as Bioinformatics. For such applications, when a constituent service fails, the application fails, even though there are other nodes that can substitute for the failed service. This concern is not addressed in the specification of high-level composition languages such as that of the Business Process Execution Language (BPEL). We propose an approach to transparently autonomizing existing BPEL processes in order to make them modifiable at runtime and more resilient to the failures in their execution environment. By transparent introduction of adaptive behavior, adaptation preserves the original business logic of the aggregate service and does not tangle the code for adaptive behavior with that of the aggregate service. The major contributions of this dissertation are: first, we assessed the effectiveness of BPEL language support in developing adaptive mechanisms. As a result, we identified the strengths and limitations of BPEL and came up with strategies to address those limitations. Second, we developed a technique to enhance existing BPEL processes transparently in order to support dynamic adaptation. We proposed a framework which uses transparent shaping and generative programming to make BPEL processes adaptive. Third, we developed a technique to dynamically discover and bind to substitute services. Our technique was evaluated and the result showed that dynamic utilization of components improves the flexibility of adaptive BPEL processes. Fourth, we developed an extensible policy-based technique to specify how to handle exceptional behavior. We developed a generic component that introduces adaptive behavior for multiple BPEL processes. Fifth, we identify ways to apply our work to facilitate adaptability in composite Grid services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of 3G (the 3rd generation telecommunication) value-added services brings higher requirements of Quality of Service (QoS). Wideband Code Division Multiple Access (WCDMA) is one of three 3G standards, and enhancement of QoS for WCDMA Core Network (CN) becomes more and more important for users and carriers. The dissertation focuses on enhancement of QoS for WCDMA CN. The purpose is to realize the DiffServ (Differentiated Services) model of QoS for WCDMA CN. Based on the parallelism characteristic of Network Processors (NPs), the NP programming model is classified as Pool of Threads (POTs) and Hyper Task Chaining (HTC). In this study, an integrated programming model that combines both of the two models was designed. This model has highly efficient and flexible features, and also solves the problems of sharing conflicts and packet ordering. We used this model as the programming model to realize DiffServ QoS for WCDMA CN. ^ The realization mechanism of the DiffServ model mainly consists of buffer management, packet scheduling and packet classification algorithms based on NPs. First, we proposed an adaptive buffer management algorithm called Packet Adaptive Fair Dropping (PAFD), which takes into consideration of both fairness and throughput, and has smooth service curves. Then, an improved packet scheduling algorithm called Priority-based Weighted Fair Queuing (PWFQ) was introduced to ensure the fairness of packet scheduling and reduce queue time of data packets. At the same time, the delay and jitter are also maintained in a small range. Thirdly, a multi-dimensional packet classification algorithm called Classification Based on Network Processors (CBNPs) was designed. It effectively reduces the memory access and storage space, and provides less time and space complexity. ^ Lastly, an integrated hardware and software system of the DiffServ model of QoS for WCDMA CN was proposed. It was implemented on the NP IXP2400. According to the corresponding experiment results, the proposed system significantly enhanced QoS for WCDMA CN. It extensively improves consistent response time, display distortion and sound image synchronization, and thus increases network efficiency and saves network resource.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As massive data sets become increasingly available, people are facing the problem of how to effectively process and understand these data. Traditional sequential computing models are giving way to parallel and distributed computing models, such as MapReduce, both due to the large size of the data sets and their high dimensionality. This dissertation, as in the same direction of other researches that are based on MapReduce, tries to develop effective techniques and applications using MapReduce that can help people solve large-scale problems. Three different problems are tackled in the dissertation. The first one deals with processing terabytes of raster data in a spatial data management system. Aerial imagery files are broken into tiles to enable data parallel computation. The second and third problems deal with dimension reduction techniques that can be used to handle data sets of high dimensionality. Three variants of the nonnegative matrix factorization technique are scaled up to factorize matrices of dimensions in the order of millions in MapReduce based on different matrix multiplication implementations. Two algorithms, which compute CANDECOMP/PARAFAC and Tucker tensor decompositions respectively, are parallelized in MapReduce based on carefully partitioning the data and arranging the computation to maximize data locality and parallelism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern geographical databases, which are at the core of geographic information systems (GIS), store a rich set of aspatial attributes in addition to geographic data. Typically, aspatial information comes in textual and numeric format. Retrieving information constrained on spatial and aspatial data from geodatabases provides GIS users the ability to perform more interesting spatial analyses, and for applications to support composite location-aware searches; for example, in a real estate database: Find the nearest homes for sale to my current location that have backyard and whose prices are between $50,000 and $80,000. Efficient processing of such queries require combined indexing strategies of multiple types of data. Existing spatial query engines commonly apply a two-filter approach (spatial filter followed by nonspatial filter, or viceversa), which can incur large performance overheads. On the other hand, more recently, the amount of geolocation data has grown rapidly in databases due in part to advances in geolocation technologies (e.g., GPS-enabled smartphones) that allow users to associate location data to objects or events. The latter poses potential data ingestion challenges of large data volumes for practical GIS databases. In this dissertation, we first show how indexing spatial data with R-trees (a typical data pre-processing task) can be scaled in MapReducea widely-adopted parallel programming model for data intensive problems. The evaluation of our algorithms in a Hadoop cluster showed close to linear scalability in building R-tree indexes. Subsequently, we develop efficient algorithms for processing spatial queries with aspatial conditions. Novel techniques for simultaneously indexing spatial with textual and numeric data are developed to that end. Experimental evaluations with real-world, large spatial datasets measured query response times within the sub-second range for most cases, and up to a few seconds for a small number of cases, which is reasonable for interactive applications. Overall, the previous results show that the MapReduce parallel model is suitable for indexing tasks in spatial databases, and the adequate combination of spatial and aspatial attribute indexes can attain acceptable response times for interactive spatial queries with constraints on aspatial data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lack of analytical models that can accurately describe large-scale networked systems makes empirical experimentation indispensable for understanding complex behaviors. Research on network testbeds for testing network protocols and distributed services, including physical, emulated, and federated testbeds, has made steady progress. Although the success of these testbeds is undeniable, they fail to provide: 1) scalability, for handling large-scale networks with hundreds or thousands of hosts and routers organized in different scenarios, 2) flexibility, for testing new protocols or applications in diverse settings, and 3) inter-operability, for combining simulated and real network entities in experiments. This dissertation tackles these issues in three different dimensions. First, we present SVEET, a system that enables inter-operability between real and simulated hosts. In order to increase the scalability of networks under study, SVEET enables time-dilated synchronization between real hosts and the discrete-event simulator. Realistic TCP congestion control algorithms are implemented in the simulator to allow seamless interactions between real and simulated hosts. SVEET is validated via extensive experiments and its capabilities are assessed through case studies involving real applications. Second, we present PrimoGENI, a system that allows a distributed discrete-event simulator, running in real-time, to interact with real network entities in a federated environment. PrimoGENI greatly enhances the flexibility of network experiments, through which a great variety of network conditions can be reproduced to examine what-if questions. Furthermore, PrimoGENI performs resource management functions, on behalf of the user, for instantiating network experiments on shared infrastructures. Finally, to further increase the scalability of network testbeds to handle large-scale high-capacity networks, we present a novel symbiotic simulation approach. We present SymbioSim, a testbed for large-scale network experimentation where a high-performance simulation system closely cooperates with an emulation system in a mutually beneficial way. On the one hand, the simulation system benefits from incorporating the traffic metadata from real applications in the emulation system to reproduce the realistic traffic conditions. On the other hand, the emulation system benefits from receiving the continuous updates from the simulation system to calibrate the traffic between real applications. Specific techniques that support the symbiotic approach include: 1) a model downscaling scheme that can significantly reduce the complexity of the large-scale simulation model, resulting in an efficient emulation system for modulating the high-capacity network traffic between real applications; 2) a queuing network model for the downscaled emulation system to accurately represent the network effects of the simulated traffic; and 3) techniques for reducing the synchronization overhead between the simulation and emulation systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing needs for computational power in areas such as weather simulation, genomics or Internet applications have led to sharing of geographically distributed and heterogeneous resources from commercial data centers and scientific institutions. Research in the areas of utility, grid and cloud computing, together with improvements in network and hardware virtualization has resulted in methods to locate and use resources to rapidly provision virtual environments in a flexible manner, while lowering costs for consumers and providers. ^ However, there is still a lack of methodologies to enable efficient and seamless sharing of resources among institutions. In this work, we concentrate in the problem of executing parallel scientific applications across distributed resources belonging to separate organizations. Our approach can be divided in three main points. First, we define and implement an interoperable grid protocol to distribute job workloads among partners with different middleware and execution resources. Second, we research and implement different policies for virtual resource provisioning and job-to-resource allocation, taking advantage of their cooperation to improve execution cost and performance. Third, we explore the consequences of on-demand provisioning and allocation in the problem of site-selection for the execution of parallel workloads, and propose new strategies to reduce job slowdown and overall cost.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With hundreds of millions of users reporting locations and embracing mobile technologies, Location Based Services (LBSs) are raising new challenges. In this dissertation, we address three emerging problems in location services, where geolocation data plays a central role. First, to handle the unprecedented growth of generated geolocation data, existing location services rely on geospatial database systems. However, their inability to leverage combined geographical and textual information in analytical queries (e.g. spatial similarity joins) remains an open problem. To address this, we introduce SpsJoin, a framework for computing spatial set-similarity joins. SpsJoin handles combined similarity queries that involve textual and spatial constraints simultaneously. LBSs use this system to tackle different types of problems, such as deduplication, geolocation enhancement and record linkage. We define the spatial set-similarity join problem in a general case and propose an algorithm for its efficient computation. Our solution utilizes parallel computing with MapReduce to handle scalability issues in large geospatial databases. Second, applications that use geolocation data are seldom concerned with ensuring the privacy of participating users. To motivate participation and address privacy concerns, we propose iSafe, a privacy preserving algorithm for computing safety snapshots of co-located mobile devices as well as geosocial network users. iSafe combines geolocation data extracted from crime datasets and geosocial networks such as Yelp. In order to enhance iSafe's ability to compute safety recommendations, even when crime information is incomplete or sparse, we need to identify relationships between Yelp venues and crime indices at their locations. To achieve this, we use SpsJoin on two datasets (Yelp venues and geolocated businesses) to find venues that have not been reviewed and to further compute the crime indices of their locations. Our results show a statistically significant dependence between location crime indices and Yelp features. Third, review centered LBSs (e.g., Yelp) are increasingly becoming targets of malicious campaigns that aim to bias the public image of represented businesses. Although Yelp actively attempts to detect and filter fraudulent reviews, our experiments showed that Yelp is still vulnerable. Fraudulent LBS information also impacts the ability of iSafe to provide correct safety values. We take steps toward addressing this problem by proposing SpiDeR, an algorithm that takes advantage of the richness of information available in Yelp to detect abnormal review patterns. We propose a fake venue detection solution that applies SpsJoin on Yelp and U.S. housing datasets. We validate the proposed solutions using ground truth data extracted by our experiments and reviews filtered by Yelp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Bachelor Thesis I want to provide readers with tools and scripts for the control of a 7DOF manipulator, backed up by some theory of Robotics and Computer Science, in order to better contextualize the work done. In practice, we will see most common software, and developing environments, used to cope with our task: these include ROS, along with visual simulation by VREP and RVIZ, and an almost "stand-alone" ROS extension called MoveIt!, a very complete programming interface for trajectory planning and obstacle avoidance. As we will better appreciate and understand in the introduction chapter, the capability of detecting collision objects through a camera sensor, and re-plan to the desired end-effector pose, are not enough. In fact, this work is implemented in a more complex system, where recognition of particular objects is needed. Through a package of ROS and customized scripts, a detailed procedure will be provided on how to distinguish a particular object, retrieve its reference frame with respect to a known one, and then allow navigation to that target. Together with technical details, the aim is also to report working scripts and a specific appendix (A) you can refer to, if desiring to put things together.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements The authors thank the children, their parents and school staff, who participated in this research, and who so willingly gave us their time, help and support. They also thank Steven Knox and Alan Clelland for their work on programming the mobile phone application. Additional thanks to DynaVox Inc. for supplying the Vmax communication devices to run our system on and Sensory Software Ltd for supplying us with their AAC software. This research was supported by the Research Council UKs Digittal Economy Programme and EPSRC (Grant numbers EP/F067151/1, EP/F066880/1, EP/E011764/1, EP/H022376/1, and EP/H022570 /1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postprint

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phenomenographic study uncovers variations in the way that the subjects are aware of a phenomenon. In the categories of description that represent the variations in awareness there are features that, through their variation, define the characteristics of the categories. Teaching seeks to foster a change in the way that the learner is aware of a phenomenon through opening up a space of learning. This paper outlines the way that the outcome spaces from a phenomenographic study can be used to plan a teaching programme that utilises variations in the features. It discusses a strategy for teaching programming based on a phenomenographic study of practitioner conceptions of an object-oriented program. The strategy covers features related to the nature of an object-oriented program. Copyright 2010 ACM.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>Cumulon is a system aimed at simplifying the development and deployment of statistical analysis of big data in public clouds. Cumulon allows users to program in their familiar language of matrices and linear algebra, without worrying about how to map data and computation to specific hardware and cloud software platforms. Given user-specified requirements in terms of time, monetary cost, and risk tolerance, Cumulon automatically makes intelligent decisions on implementation alternatives, execution parameters, as well as hardware provisioning and configuration settings -- such as what type of machines and how many of them to acquire. Cumulon also supports clouds with auction-based markets: it effectively utilizes computing resources whose availability varies according to market conditions, and suggests best bidding strategies for them. Cumulon explores two alternative approaches toward supporting such markets, with different trade-offs between system and optimization complexity. Experimental study is conducted to show the efficiency of Cumulon's execution engine, as well as the optimizer's effectiveness in finding the optimal plan in the vast plan space.</p>