988 resultados para Palmetto Sites Program
Resumo:
Stable isotopic analyses of bulk carbonates recovered from Ontong Java Plateau during Ocean Drilling Program (ODP) Leg 192 (Holes 1183A and 1186A) show an ~0.5 per mil increase in d18O values from the upper Campanian/lower Maastrichtian to the upper Maastrichtian. This shift is consistent with widespread evidence for cooling at this time. Similar shifts were found at other localities on Ontong Java Plateau (Deep Sea Drilling Project [DSDP] Sites 288 and 289 and ODP Site 807) and at DSDP Site 317 on Manihiki Plateau. These data extend evidence for Maastrichtian cooling into the southwestern tropical and subtropical Pacific. The record of apparent cooling survives despite a significant diagenetic overprint at all sites. Comparing average Maastrichtian d18O values among sites suggests that diagenesis caused d18O to first be shifted toward higher values and then back toward lower values as burial depth increased. Carbon isotopes at the six sites show no apparent primary shifts, but at four sites, the Cretaceous/Tertiary boundary interval coincides with a negative excursion attributed to alteration of sediments near the boundary.
Resumo:
Chemical (Sr, Mg) and isotopic (d18O, 87Sr/86Sr) compositions of calcium carbonate veins (CCV) in the oceanic basement were determined to reconstruct changes in Sr/Ca and Mg/Ca of seawater in the Cenozoic. We examined CCV from ten basement drill sites in the Atlantic and Pacific, ranging in age between 165 and 2.3 Ma. Six of these sites are from cold ridge flanks in basement <46 Ma, which provide direct information about seawater composition. CCV of these young sites were dated, using the Sr isotopic evolution of seawater. For the other sites, temperature-corrections were applied to correct for seawater-basement exchange processes. The combined data show that a period of constant/low Sr/Ca (4.46 - 6.22 mmol/mol) and Mg/Ca (1.12 - 2.03 mol/mol) between 165 and 30 Ma was followed by a steady increase in Mg/Ca ratios by a factor of three to modern ocean composition. Mg/Ca - Sr/Ca relations suggest that variations in hydrothermal fluxes and riverine input are likely causes driving the seawater compositional changes. However, additional forcing may be involved in explaining the timing and magnitude of changes. A plausible scenario is intensified carbonate production due to increased alkalinity input to the oceans from silicate weathering, which in turn is a result of subduction-zone recycling of CO2 from pelagic carbonate formed after the Cretaceous slow-down in ocean crust production rate.
Resumo:
Sediment samples from both Site 165-999/165-1000 (Atlantic) and Site 202-1241 (Pacific) were chosen at 1Ma intervals over the period 0.3-9.3Ma. Samples were washed and sieved <150µm. Splits of the sediment fraction were picked completely to obtain, where possible, at least 30 specimens each of planktic foraminifer species Globigerinoides sacculifer and Globorotalia tumida, on which outline analysis (Fourier) was performed. Sea surface and thermocline temperatures were reconstructed from palaeoenvironmental proxies (UK37' and Tex86H respectively).
(Table 2) Residual hydrocarbon gas concentrations at ODP Sites 164-991, 164-992, 164-993 and 164-996