923 resultados para PROGRAMES OF ACTION
Resumo:
Constipation is one of the most common digestive complaints. It is a symptom, not a disease. The subjectivity that this involves means that assessments of clinical epidemiology, socioeconomic costs and pharmacotherapy are difficult, since there is no definition of 'normal' bowel habit. Although constipation can affect all ages, the problem increases with age, and is of particular concern for those who are frail and in long term care. Cultural influences may affect the prevalence in older people. Drug therapy of constipation cannot be considered in isolation, since there are issues in the prevention of constipation and the principles of good management that also apply. Furthermore, some consideration of the pathophysiology and diagnosis is important. This is because a number of remediable causes can be identified, and the diagnostic process involves patient education, which in turn may be effective in reducing costs. It is the complaint of constipation which leads either to self-medication or to consultation with the medical profession. Both of these courses of action have a significant influence on utilisation of laxatives (cathartics), obtained both over-the-counter and by prescription. Although there are a large number of laxative preparations available, therapy has changed little in half a century. Costs may vary considerably, and with such a significant problem there is a need for comparative studies. However, study methodologies are difficult, and a significant placebo response may be found. Education and preventive measures have been shown to reduce laxative use and costs in institutions. Unfortunately, there are few comparative studies of individual laxatives and even fewer cost-effectiveness studies. Those that there are have been based in institutions, and so extrapolation to other situations may be difficult. In general, little attention is given to constipation. It is, however, an area with significant resource implications in which education and preventive measures have been shown to be beneficial. Even so, there is still a need for good comparative studies, particularly where cost effectiveness is concerned.
Resumo:
This paper gives an overview of the work carried out in a GARTEUR (Group for Aeronautical Research and Technology in Europe) program, under the chairmanship of the author, to develop and validate analytical and numerical methods to characterise real impact damage in composite structures, particularly those designed to sustain load in a postbuckled state, and to study the durability of bonded repairs. GARTEUR is an inter-governmental agreement between the seven European countries with the largest direct employment in the Aerospace industry, to mobilise scientific and technical knowledge between the member countries. A number of Action Groups have been launched, since GARTEUR’s inception in the early 1970s, to address specific technical issues of interest to the participating members. The research presented in this paper was performed under Action Group 28 with partners from ONERA, EADS-CCR (France), DLR, AIRBUS-Deutschland, EADS-M (Germany), CIRA (Italy), INTA (Spain), SICOMP, Saab, (Sweden), NLR (The Netherlands), QinetiQ, BAE Systems, Imperial College London and the University of Sheffield (United Kingdom). The Action Group tasks were divided into four Work Elements (WEs): WE1-Prediction and characterisation of impact damage, WE2- Postbuckling with delamination, WE3-Repair and WE4-Fatigue. This paper outlines the main developments and achievements within each Work Element.
Resumo:
IFN-ß, IL-27, and IL-10 have been shown to exert a range of similar immunoregulatory effects in murine and human experimental systems, particularly in Th1- and Th17-mediated models of autoimmune inflammatory disease. In this study we sought to translate some of our previous findings in murine systems to human in vitro models and delineate the interdependence of these different cytokines in their immunoregulatory effects. We demonstrate that human IL-27 upregulates IL-10 in T cell-activated PBMC cultures and that IFN-ß drives IL-27 production in activated monocytes. IFN-ß-driven IL-27 is responsible for the upregulation of IL-10, but not IL-17 suppression, by IFN-ß in human PBMCs. Surprisingly, IL-10 is not required for the suppression of IL-17 by either IL-27 or IFN-ß in this model or in de novo differentiating Th17 cells, nor is IL-27 signaling required for the suppression of experimental autoimmune encephalomyelitis (EAE) by IFN-ß in vivo. Furthermore, and even more surprisingly, IL-10 is not required for the suppression of Th17-biased EAE by IL-27, in sharp contrast to Th1-biased EAE. In conclusion, IFN-ß and IL-27 both induce human IL-10, both suppress human Th17 responses, and both suppress murine EAE. However, IL-27 signaling is not required for the therapeutic effect of IFN-ß in EAE. Suppression of Th17-biased EAE by IL-27 is IL-10-independent, in contrast to its mechanism of action in Th1-biased EAE. Taken together, these findings delineate a complex set of interdependent and independent immunoregulatory mechanisms of IFN-ß, IL-27, and IL-10 in human experimental models and in murine Th1- and Th17-driven autoimmunity.
Resumo:
This paper presents a novel method that leverages reasoning capabilities in a computer vision system dedicated to human action recognition. The proposed methodology is decomposed into two stages. First, a machine learning based algorithm - known as bag of words - gives a first estimate of action classification from video sequences, by performing an image feature analysis. Those results are afterward passed to a common-sense reasoning system, which analyses, selects and corrects the initial estimation yielded by the machine learning algorithm. This second stage resorts to the knowledge implicit in the rationality that motivates human behaviour. Experiments are performed in realistic conditions, where poor recognition rates by the machine learning techniques are significantly improved by the second stage in which common-sense knowledge and reasoning capabilities have been leveraged. This demonstrates the value of integrating common-sense capabilities into a computer vision pipeline. © 2012 Elsevier B.V. All rights reserved.
Resumo:
FFA2 is a G protein-coupled receptor that responds to short chain fatty acids (SCFAs) and has generated interest as a therapeutic target for metabolic and inflammatory conditions. However, definition of its functions has been slowed by a dearth of selective ligands that can distinguish it from the closely related FFA3. At present, the only selective ligands described for FFA2 suffer from either poor potency, altered signaling due to allosteric modes of action, or a lack of function at non-human orthologs of the receptor. To address the need for novel selective ligands, we synthesized two compounds potentially having FFA2 activity and examined the molecular basis of their function. These compounds were confirmed to be potent and selective FFA2 agonists that interact with the orthosteric binding site. A combination of ligand structure-activity relationship, pharmacological analysis, homology modeling, species ortholog comparisons and mutagenesis studies were then employed to define the molecular basis of selectivity and function of these ligands. From this, we identified key residues within both extracellular loop 2 (ECL2) and the transmembrane domain (TM) regions of FFA2 critical for ligand function. One of these ligands was active with reasonable potency at rodent orthologs of FFA2 and demonstrated the role of FFA2 in the regulation of lipolysis in murine 3T3-L1 adipocytes. Together, these findings describe the first potent and selective FFA2 orthosteric agonists and demonstrate key aspects of ligand interaction within the orthosteric binding site of FFA2 that will be invaluable in future ligand development at this receptor.
Resumo:
Psychological interventions aimed at seizure management are described with a 14-year-old buy with a learning disability and intractable epilepsy. Baseline records suggested that a majority of tonic seizures and 'drop attacks' were associated with going off to sleep and by environmental 'startles'. Psychological formulation implicated sudden changes in arousal levels as an underlying mechanism of action. Cognitive-behavioural countermeasures were employed to alter arousal levels and processes in different ways in different 'at-risk' situations. A multiple baseline design was used to control for non-specific effects of interventions on non-targeted seizures. Results suggested significant declines in the number of sleep onset and startle-response seizures were attained by these methods. Gains were maintained at 2-month follow-up. (C) 1999 BEA Trading Ltd.
Resumo:
Purpose: This study examines long-term neuropsychological and psychosocial outcomes of survivors of malignant middle cerebral artery infarction treated via decompressive hemicraniectomy. Method: A case series design facilitated a detailed analysis of the outcomes among five participants. Neuropsychological domains assessed included premorbid and current IQ, sustained, selective and divided attention, visual and auditory memory, executive functioning and visuo-spatial ability. Psychosocial domains assessed included self-rated depression, anxiety and quality of life. Participants and their main carer were asked about their retrospective view of surgery. Results: All participants showed neuropsychological impairments in multiple cognitive domains, with preserved ability in others. Effects of laterality of brain function were evident in some domains. Clinically significant depression was evident in two participants. Overall quality of life was within average limits in three of four assessed participants. Four participants retrospectively considered surgery as having been a favourable course of action. Conclusion: While neuropsychological impairments are highly likely post-surgery, preserved abilities and social support may serve a protective function against depression and an unacceptably poor quality of life. Results do not support the suggestion that decompressive hemicraniectomy following malignant middle cerebral artery infarction necessarily leads to unacceptable neuropsychological or psychosocial outcomes.
Resumo:
Dioxin contamination of the food chain typically occurs when cocktails of combustion residues or polychlorinated biphenyl (PCB) containing oils become incorporated into animal feed. These highly toxic compounds are bioaccumulative with small amounts posing a major health risk. The ability to identify animal exposure to these compounds prior to their entry into the food chain may be an invaluable tool to safeguard public health. Dioxin-like compounds act by a common mode of action and this suggests that markers or patterns of response may facilitate identification of exposed animals. However, secondary co-contaminating compounds present in typical dioxin sources may affect responses to compounds. This study has investigated for the first time the potential of a metabolomics platform to distinguish between animals exposed to different sources of dioxin contamination through their diet. Sprague-Dawley rats were given feed containing dioxin-like toxins from hospital incinerator soot, a common PCB oil standard and pure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (normalized at 0.1 µg/kg TEQ) and acquired plasma was subsequently biochemically profiled using ultra high performance liquid chromatography (UPLC) quadropole time-of-flight-mass spectrometry (QTof-MS). An OPLS-DA model was generated from acquired metabolite fingerprints and validated which allowed classification of plasma from individual animals into the four dietary exposure study groups with a level of accuracy of 97-100%. A set of 24 ions of importance to the prediction model, and which had levels significantly altered between feeding groups, were positively identified as deriving from eight identifiable metabolites including lysophosphatidylcholine (16:0) and tyrosine. This study demonstrates the enormous potential of metabolomic-based profiling to provide a powerful and reliable tool for the detection of dioxin exposure in food-producing animals.
Resumo:
Alternariol (AOH) is a mycotoxin commonly produced by Alternaria alternata on a wide range of foods. Few studies to date have been performed to evaluate the effects of AOH on endocrine activity. The present study makes use of in vitro mammalian cellular based assays and gene expression to investigate the ability of AOH to act as an endocrine disruptor by various modes of action. Reporter gene assays (RGAs), incorporating natural steroid hormone receptors for oestrogens, androgens, progestagens and glucocorticoids were used to identify endocrine disruption at the level of nuclear receptor transcriptional activity, and the H295R steroidogenesis assay was used to assess endocrine disruption at the level of gene expression and steroid hormone production. AOH exhibited a weak oestrogenic response when tested in the oestrogen responsive RGA and binding of progesterone to the progestagen receptor was shown to be synergistically increased in the presence of AOH. H295R cells when exposed to 0.1-1000ng/ml AOH, did not cause a significant change in testosterone and cortisol hormones but exposure to 1000ng/ml (3.87µM) AOH resulted in a significant increase in estradiol and progesterone production. In the gene expression study following exposure to 1000ng/ml (3.87µM) AOH, only one gene NR0B1 was down-regulated, whereas expression of mRNA for CYP1A1, MC2R, HSD3B2, CYP17, CYP21, CYP11B2 and CYP19 was up-regulated. Expression of the other genes investigated did not change significantly. In conclusion AOH is a weak oestrogenic mycotoxin that also has the ability to interfere with the steroidogenesis pathway.
Resumo:
The natural isoquinoline alkaloid berberine exhibits a wide spectrum of biological activities including antitumor activity, but its mechanism of action remains to be fully elucidated. Here, we report that berberine induced apoptosis in human melanoma cells, through a process that involved mitochondria and caspase activation. Berberine-induced activation of a number of caspases, including caspases 3, 4, 7, 8, and 9. Pan-caspase inhibitor, z-VAD-fmk, and caspase-8 and caspase-9 inhibitors prevented apoptosis. Berberine also led to the generation of the p20 cleavage fragment of BAP31, involved in directing proapoptotic signals between the endoplasmic reticulum and the mitochondria. Treatment of SK-MEL-2 melanoma cells with berberine induced disruption of the mitochondrial transmembrane potential, release of cytochrome c and apoptosis-inducing factor from the mitochondria to the cytosol, generation of reactive oxygen species (ROS), and a decreased ATP/ADP ratio. Overexpression of bcl-xL by gene transfer prevented berberine-induced cell death, mitochondrial transmembrane potential loss, and cytochrome c and apoptosis-inducing factor release, but not ROS generation. N-acetyl-L-cysteine inhibited the production of ROS, but did not abrogate the berberine-induced apoptosis. Inhibition of extracellular signal-regulated kinase (ERK) phosphorylation, by using the mitogen-activated protein kinase/ERK kinase inhibitor PD98059, and reduction of B-RAF levels by silencing RNA induced cell death of SK-MEL-2 cells, and diminished the berberine concentration required to promote apoptosis. These data show that berberine-induced apoptosis in melanoma cells involves mitochondria and caspase activation, but ROS generation was not essential. Our results indicate that inhibition of B-RAF/ERK survival signaling facilitates the cell death response triggered by berberine. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Atmospheric pressure non-thermal plasma (APNTP) has been gaining increasing interest as a new alternative antibacterial approach. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. Mechanistic elucidation of the antimicrobial activity will facilitate development and rational optimisation of this approach for potential medical applications. In this study, the antibacterial efficacy of an in-house-built APNTP jet was evaluated alongside an investigation of the interactions between APNTP and major cellular components in order to identify the potential cellular targets involved in plasma-mediated bacterial destruction mechanisms. The investigated plasma jet exhibited excellent, rapid antibacterial activity against a selected panel of clinically significant bacterial species including Bacillus cereus, meticillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa, all of which were completely inactivated within 2 min of plasma exposure. Plasma-mediated damaging effects were observed, to varying degrees, on all of the investigated cellular components including DNA, a model protein enzyme, and lipid membrane integrity and permeability. The antibacterial efficacy of APNTP appears to involve a multiple-target mechanism, which potentially reduces the likelihood of emergence of microbial resistance towards this promising antimicrobial approach. However, cellular membrane damage and resulting permeability perturbation was found to be the most likely rate-determining step in this mechanism. Crown Copyright © 2013.
Resumo:
The present experiments were undertaken to pharmacologically characterize a noninvasive, chronic, experimental dog model of nasal congestion with the overall goal of developing an effective tool for studying the mechanism of action of nasal decongestant drugs.
Resumo:
Dietary fiber has several anticarcinogenic effects and is thought to be protective against esophageal cancer. The aim of this systematic review was to quantify the association between dietary fiber and the risk of esophageal cancer by investigating histological subtypes of esophageal cancer and the stage at which fiber may influence the carcinogenic pathway. Systematic search strategies were used to identify relevant studies, and adjusted odds ratios (ORs) were combined using random-effects meta-analyses to assess the risk of cancer when comparing extreme categories of fiber intake. Ten relevant case-control studies were identified within the timeframe searched. Pooled estimates from eight studies of esophageal adenocarcinoma revealed a significant inverse association with the highest fiber intakes (OR 0.66; 95% confidence interval [CI] 0.44-0.98). Two studies also identified protective effects of dietary fiber against Barrett's esophagus. Similar, though nonsignificant, associations were observed when results from five studies of fiber intake and risk of squamous cell carcinoma were combined (OR 0.61; 95%CI 0.31-1.20). Dietary fiber is associated with protective effects against esophageal carcinogenesis, most notably esophageal adenocarcinoma. Potential methods of action include modification of gastroesophageal reflux and/or weight control.
Resumo:
Managing gait disturbances in people with Parkinson’s disease is a pressing challenge, as symptoms can contribute to injury and morbidity through an increased risk of falls. While drug-based interventions have limited efficacy in alleviating gait impairments, certain non-pharmacological methods, such as cueing, can also induce transient improvements to gait. The approach adopted here is to use computationally-generated sounds to help guide and improve walking actions. The first method described uses recordings of force data taken from the steps of a healthy adult which in turn were used to synthesize realistic gravel-footstep sounds that represented different spatio-temporal parameters of gait, such as step duration and step length. The second method described involves a novel method of sonifying, in real time, the swing phase of gait using real-time motion-capture data to control a sound synthesis engine. Both approaches explore how simple but rich auditory representations of action based events can be used by people with Parkinson’s to guide and improve the quality of their walking, reducing the risk of falls and injury. Studies with Parkinson’s disease patients are reported which show positive results for both techniques in reducing step length variability. Potential future directions for how these sound approaches can be used to manage gait disturbances in Parkinson’s are also discussed.
Resumo:
Ethnopharmacological relevance: The ethnobotanical use of Aframomum melegueta in the treatment of urinary tract and soft tissue infection suggested that the plant has antimicrobial activity.
Materials and methods: To substantiate the folkloric claims, an acetone, 50:50 acetone:methanol and 2:1 chloroform:methanol extracts were tested against Escherichia coli K12; acetone extract and the fractions of acetone extracts were tested against Listeria monocytogenes. Bioassay-guided fractionation was performed on the extract using L. monocytogenes as the test organism to isolate the bioactive compounds which were then tested against all the other organisms.
Results: Four known labdane diterpenes (G3 and G5) were isolated for the first time from the rhizomes of A. melegueta and purified. These were tested against E. coli, L. monocytogenes, methicillin resistant Staphylococus aureus (MRSA) and S. aureus to determine antibacterial activity. The result showed that two compounds G3 and G5 exhibited more potent antibacterial activity compared to the current clinically used antibiotics ampicillin, gentamicin and vancomycin and can be potential antibacterial lead compounds. The structure of the labdane diterpenes were elucidated using nuclear magnetic resonance (NMR) spectroscopy and Mass spectrometry. A possible mode of action of the isolated compound G3 and its potential cytotoxicity towards mammalian cells were also discussed.
Conclusion: The results confirmed the presence of antibacterial compounds in the rhizomes of A. melegueta with a favourable toxicity profile which could be further optimized as antibacterial lead compounds.