996 resultados para PRESSURE-DEPENDENCE
Resumo:
The cytoskeleton (CSK) is a nonequilibrium polymer network that uses hydrolyzable sources of free energy such as adenosine triphosphate (ATP) to remodel its internal structure. As in inert nonequilibrium soft materials, CSK remodeling has been associated with structural rearrangements driven by energy-activated processes. We carry out particle tracking and traction microscopy measurements of alveolar epithelial cells at various temperatures and ATP concentrations. We provide the first experimental evidence that the remodeling dynamics of the CSK is driven by structural rearrangements over free-energy barriers induced by thermally activated forces mediated by ATP. The measured activation energy of these forces is ~40kBTr (kB being the Boltzmann constant and Tr being the room temperature). Our experiments provide clues to understand the analogy between the dynamics of the living CSK and that of inert nonequilibrium soft materials.
Resumo:
Introduction: The control of high blood pressure (BP) remains insufficient in developed as well as in developing countries. We conducted a cross-sectional survey to investigate the management of hypertension and the achievement of target BPs in a large population of hypertensive patients treated by Swiss primary care physicians. Methods. Data from 4594 hypertensive patients were collected and assessed for demographic data, mode of treatment and BP achievements for the overall population and for high-risk patients such as diabetics and patients with impaired renal function (CKD patients). Furthermore, we analysed the achieved BP in patients receiving single pill combinations or dual free combinations for the three most commonly prescribed substances. Results. In this large patient population, 84% of patients were receiving an antihypertensive treatment of which 54% showed BP control (< 140/90 mmHg or < 130/80 mmHg for diabetics and patients with CKD). Considering the higher BP target in the elderly, 60.6% of treated patients were on target. In contrast, 28.8% of treated diabetics and 29.7% of patients with impaired renal function met BP goals. Diuretics and blockers of the renin-angiotensin system were the most commonly prescribed substances. High-risk patients and patients at advanced age (≥ 80 years) received dual free combination more frequently than younger patients. The use of diuretics was particularly high because of the prescription of single pill formulations. Differences in the pattern of drug prescription were found according to the linguistic areas. Conclusion. The control of hypertension in the Swiss hypertensive population is relatively high but still insufficient particularly among high cardiovascular risk patients such as diabetics and patients with impaired renal function. A further improvement of BP control could perhaps be achieved with a greater use of single pill combinations particularly in patients with complicated hypertension.
Resumo:
Atrial natriuretic peptides (ANP) are released into the circulation in response to enhanced atrial stretching. These peptides not only have diuretic and natriuretic properties, but also exert a relaxing effect on the vasculature. Moreover, they antagonize the contractions induced by norepinephrine and angiotensin II. Neuropeptide Y (NPY) is also a vasoactive peptide. It is widely distributed throughout the central and peripheral nervous systems. NPY is coreleased with norepinephrine by perivascular nerve endings. At high concentrations, this peptide has a direct vasoconstrictor effect. In addition, it enhances the vascular effect of various agonists, including norepinephrine and angiotensin II. Both ANP and NPY have an inhibitory effect on renin secretion. This effect may have important implications for the role of these peptides in cardiovascular regulation.
Resumo:
A new high-precision ultrasonic device was developed to determine noninvasively arterial compliance as a function of blood pressure. Because of the nonlinear elastic properties of arterial walls, measurements of compliance can be appropriately compared only if obtained over a range of pressures. This apparatus was used to evaluate in a double-blind, parallel fashion the effect of three different antihypertensive drugs and of a placebo on radial artery compliance. Thirty-two normotensive volunteers were randomly allocated to an 8-day, once-a-day oral treatment with either a placebo, 100 mg atenolol, 20 mg nitrendipine, or 20 mg lisinopril. Blood pressure, heart rate, radial artery diameter, and arterial compliance were measured immediately before as well as 6 hours after dosing on the first and last days of the study. On the eighth day of administration, within 6 hours after dosing, lisinopril induced an acute increase in radial artery diameter, from 2.99 +/- 0.06 to 3.28 +/- 0.09 mm (mean +/- SEM, p less than 0.01). The compliance-pressure curve was shifted upward on day 1 (p less than 0.01) as well as on day 8 (p less than 0.05). None of the other drugs induced any significant modification of these parameters. Arterial compliance has a strong nonlinear dependency on intra-arterial pressure and therefore has to be defined as a function of pressure. Antihypertensive drugs acting by different mechanisms may have different effects on the mechanical properties of large arteries.
Resumo:
OBJECTIVE: The estimation of blood pressure is dependent on the accuracy of the measurement devices. We compared blood pressure readings obtained with an automated oscillometric arm-cuff device and with an automated oscillometric wrist-cuff device and then assessed the prevalence of defined blood pressure categories. METHODS: Within a population-based survey in Dar es Salaam (Tanzania), we selected all participants with a blood pressure >/= 160/95 mmHg (n=653) and a random sample of participants with blood pressure <160/95 mmHg (n=662), based on the first blood pressure reading. Blood pressure was reassessed 2 years later for 464 and 410 of the participants, respectively. In these 874 subjects, we compared the prevalence of blood pressure categories as estimated with each device. RESULTS: Overall, the wrist device gave higher blood pressure readings than the arm device (difference in systolic/diastolic blood pressure: 6.3 +/- 17.3/3.7 +/- 11.8 mmHg, P<0.001). However, the arm device tended to give lower readings than the wrist device for high blood pressure values. The prevalence of blood pressure categories differed substantially depending on which device was used, 29% and 14% for blood pressure <120/80 mmHg (arm device versus wrist device, respectively), 30% and 33% for blood pressure 120-139/80-89 mmHg, 17% and 26% for blood pressure 140-159/90-99 mmHg, 12% and 13% for blood pressure 160-179/100-109 mmHg and 13% and 14% for blood pressure >/= 180/110 mmHg. CONCLUSIONS: A large discrepancy in the estimated prevalence of blood pressure categories was observed using two different automatic measurement devices. This emphasizes that prevalence estimates based on automatic devices should be considered with caution.
Resumo:
he complex refractive index of SiO2 layers containing Si nanoclusters (Si-nc) has been measured by spectroscopic ellipsometry in the range from 1.5 to 5.0 eV. It has been correlated with the amount of Si excess accurately measured by x-ray photoelectron spectroscopy and the nanocluster size determined by energy-filtered transmission electron microscopy. The Si-nc embedded in SiO2 have been produced by a fourfold Si+ ion implantation, providing uniform Si excess aimed at a reliable ellipsometric modeling. The complex refractive index of the Si-nc phase has been calculated by the application of the Bruggeman effective-medium approximation to the composite media. The characteristic resonances of the refractive index and extinction coefficient of bulk Si vanish out in Si-nc. In agreement with theoretical simulations, a significant reduction of the refractive index of Si-nc is observed, in comparison with bulk and amorphous silicon. The knowledge of the optical properties of these composite layers is crucial for the realization of Si-based waveguides and light-emitting devices.
Pulmonary-artery pressure and exhaled nitric oxide in Bolivian and Caucasian high altitude dwellers.
Resumo:
There is evidence that high altitude populations may be better protected from hypoxic pulmonary hypertension than low altitude natives, but the underlying mechanism is incompletely understood. In Tibetans, increased pulmonary respiratory NO synthesis attenuates hypoxic pulmonary hypertension. It has been speculated that this mechanism may represent a generalized high altitude adaptation pattern, but direct evidence for this speculation is lacking. We therefore measured systolic pulmonary-artery pressure (Doppler chocardiography) and exhaled nitric oxide (NO) in 34 healthy, middle-aged Bolivian high altitude natives and in 34 age- and sex-matched, well-acclimatized Caucasian low altitude natives living at high altitude (3600 m). The mean+/-SD systolic right ventricular to right atrial pressure gradient (24.3+/-5.9 vs. 24.7+/-4.9 mmHg) and exhaled NO (19.2+/-7.2 vs. 22.5+/-9.5 ppb) were similar in Bolivians and Caucasians. There was no relationship between pulmonary-artery pressure and respiratory NO in the two groups. These findings provide no evidence that Bolivian high altitude natives are better protected from hypoxic pulmonary hypertension than Caucasian low altitude natives and suggest that attenuation of pulmonary hypertension by increased respiratory NO synthesis may not represent a universal adaptation pattern in highaltitude populations.
Resumo:
The microstructure of CuInS2-(CIS2) polycrystalline films deposited onto Mo-coated glass has been analyzed by Raman scattering, Auger electron spectroscopy (AES), transmission electron microscopy, and x-ray diffraction techniques. Samples were obtained by a coevaporation procedure that allows different Cu-to-In composition ratios (from Cu-rich to Cu-poor films). Films were grown at different temperatures between 370 and 520-°C. The combination of micro-Raman and AES techniques onto Ar+-sputtered samples has allowed us to identify the main secondary phases from Cu-poor films such as CuIn5S8 (at the central region of the layer) and MoS2 (at the CIS2/Mo interface). For Cu-rich films, secondary phases are CuS at the surface of as-grown layers and MoS2 at the CIS2/Mo interface. The lower intensity of the MoS2 modes from the Raman spectra measured at these samples suggests excess Cu to inhibit MoS2 interface formation. Decreasing the temperature of deposition to 420-°C leads to an inhibition in observing these secondary phases. This inhibition is also accompanied by a significant broadening and blueshift of the main A1 Raman mode from CIS2, as well as by an increase in the contribution of an additional mode at about 305 cm-1. The experimental data suggest that these effects are related to a decrease in structural quality of the CIS2 films obtained under low-temperature deposition conditions, which are likely connected to the inhibition in the measured spectra of secondary-phase vibrational modes.
Resumo:
Nitrogen doped silicon (NIDOS) films have been deposited by low-pressure chemical vapor deposition from silane SiH4 and ammonia NH3 at high temperature (750°C) and the influences of the NH3/SiH4 gas ratio on the films deposition rate, refractive index, stoichiometry, microstructure, electrical conductivity, and thermomechanical stress are studied. The chemical species derived from silylene SiH2 into the gaseous phase are shown to be responsible for the deposition of NIDOS and/or (silicon rich) silicon nitride. The competition between these two deposition phenomena leads finally to very high deposition rates (100 nm/min) for low NH3/SiH4 gas ratio (R¿0.1). Moreover, complex variations of NIDOS film properties are evidenced and related to the dual behavior of the nitrogen atom into silicon, either n-type substitutional impurity or insulative intersticial impurity, according to the Si¿N atomic bound. Finally, the use of NIDOS deposition for the realization of microelectromechanical systems is investigated.
Resumo:
OBJECTIVE: The measurement of cardiac output is a key element in the assessment of cardiac function. Recently, a pulse contour analysis-based device without need for calibration became available (FloTrac/Vigileo, Edwards Lifescience, Irvine, CA). This study was conducted to determine if there is an impact of the arterial catheter site and to investigate the accuracy of this system when compared with the pulmonary artery catheter using the bolus thermodilution technique (PAC). DESIGN: Prospective study. SETTING: The operating room of 1 university hospital. PARTICIPANTS: Twenty patients undergoing cardiac surgery. INTERVENTIONS: CO was determined in parallel by the use of the Flotrac/Vigileo systems in the radial and femoral position (CO_rad and CO_fem) and by PAC as the reference method. Data triplets were recorded at defined time points. The primary endpoint was the comparison of CO_rad and CO_fem, and the secondary endpoint was the comparison with the PAC. MEASUREMENTS AND MAIN RESULTS: Seventy-eight simultaneous data recordings were obtained. The Bland-Altman analysis for CO_fem and CO_rad showed a bias of 0.46 L/min, precision was 0.85 L/min, and the percentage error was 34%. The Bland-Altman analysis for CO_rad and PAC showed a bias of -0.35 L/min, the precision was 1.88 L/min, and the percentage error was 76%. The Bland-Altman analysis for CO_fem and PAC showed a bias of 0.11 L/min, the precision was 1.8 L/min, and the percentage error was 69%. CONCLUSION: The FloTrac/Vigileo system was shown to not produce exactly the same CO data when used in radial and femoral arteries, even though the percentage error was close to the clinically acceptable range. Thus, the impact of the introduction site of the arterial catheter is not negligible. The agreement with thermodilution was low.
Contribution of the gap junction proteins Connexin40 and Connexin43 to the control of blood pressure
Resumo:
Summary Cells in tissues and organs coordinate their activities by communicating with each other through intercellular channels named gap junctions. These channels are conduits between the cytoplasmic compartments of adjacent cells, allowing the exchange of small molecules which may be crucial for hormone secretion. Renin is normally secreted in a regulated manner by specific cells of the juxtaglomerular apparatus located within the renal cortex. Gap junctional communication may be requisite to maintain an accurate functioning in coordination of renin-producing cells, more especially as renin is of paramount importance for the control of blood pressure. Connexin43 (Cx43) and Cx40 form gap junctions that link in vivo the cells of the juxtaglomerular apparatus. Cx43 links the endothelial cells, whereas gap junctions made of Cx40 connect the endothelial cells, the renin secreting cells, as well as the endothelial cells of to the renin-secreting cells of the afferent arteriole. The observation that loss of Cx40 results in chronic hypertension associated with altered vasomotion and signal conduction along arterioles, has lead us to suggest that connexins may contribute to control blood pressure by participating to the integration of various mechanical, osmotic and electrochemical stimuli involved in the control of renin secretion and by mediating the adaptive changes of the vascular wall induced by elevated blood pressure and mechanical stress. We therefore postulated that the absence of Cx40 could have deleterious effects on the coordinated functioning of the renin-containing cells, hence accounting for hypertension. In the first part of my thesis, we reported that Cx40-deficient mice (Cx40) are hypertensive due to increased plasma renin levels and numbers of renin-producing cells. Besides, we demonstrated that prostaglandins and nitric oxide, which are possible mediators in the regulation of renin secretion by the macula densa, exert a critical role in the mechanisms controlling blood pressure ín Cx40 knockout hypertensive mice. In view of previous studies that stated avessel-specifc increase in the expression of Cx43 during renin-dependent hypertension, we hypothesized that Cx43 channels are particularly well-matched to integrate the response of cells constituting the vascular wall to hypertensive conditions. Using transgenic mice in which Cx43 was replaced by Cx32, we revealed that the replacement of Cx43 by Cx32 is associated with decreased expression and secretion of renin and prevent the renin-dependent hypertension which is normally induced in the 2K1C model. To gain insights into the regulation of connexins in two separate tissues exposed to the same fluid pressure, the second part of my thesis work was dedicated to the study of the impact of chronic hypertension and related hypertrophy on the expression of the cardiovascular connexins (Cx40, Cx37, Cx43 and Cx45) in mouse aorta and heart. Our results documented that the expression of connexins is differentially regulated in mouse aorta. according to the models of hypertension. Thus, blood pressure induces mechanical forces that differentially alter the expression of vascular connexins in order to respond to an adaptation of the aortic wall observed under pathological conditions. Altogether these data provide the first evidences that intercellular communication mediated by gap junctions is required for a proper renin secretion from the juxtaglomerular apparatus in order to control blood pressure.