978 resultados para PREOPERATIVE RADIATION-THERAPY
Resumo:
In this paper we describe the efficacy of the liposomal-AlClPc (aluminum-chloro-phthalocyanine) formulation in PDT study against Ehrlich tumor cells proliferation in immunocompetent swiss mice tongue. Experiments were conduced in sixteen tumor induced mice that were divided in three control groups: (1) tumor without treatment; (2) tumor with 100 J/cm(2) laser (670 nm) irradiation; and (3) tumor with AlClPc peritumoral injection; and a PDT experimental group when tumors received AlClPc injection followed by tumor irradiation. Control groups present similar macroscopically and histological patterns after treatments, while PDT treatment induced 90% of Ehrlich tumor necrosis after 24 h of one single showing the efficacy of liposome-AlClPc (aluminum-chloro-phthalocyanine) mediated PDT application, on the treatment of oral cancer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Australian fossil record shows that from ca. 25 Myr ago, the aseasonal-wet biome (rainforest and wet heath) gave way to the unique Australian sclerophyll biomes dominated by eucalypts, acacias and casuarinas. This transition coincided with tectonic isolation of Australia, leading to cooler, drier, more seasonal climates. From 3 Myr ago, aridification caused rapid opening of the central Australian and zone. Molecular phylogenies with dated nodes have provided new perspectives on how these events could have affected the evolution of the Australian flora. During the Mid-Cenozoic (25-10 Myr ago) period of climatic change, there were rapid radiations in sclerophyll taxa, such as Banksia, eucalypts, pea-flowered legumes and Allocasuarina. At the same time, taxa restricted to the aseasonal-wet biome (Nothofagus, Podocarpaceae and Araucariaceae) did not radiate or were depleted by extinction. During the Pliocene aridification, two Eremean biome taxa (Lepidium and Chenopodiaceae) radiated rapidly after dispersing into Australia from overseas. It is clear that the biomes have different histories. Lineages in the aseasonal-wet biome are species poor, with sister taxa that are species rich, either outside Australia or in the sclerophyll biomes. In conjunction with the fossil record, this indicates depletion of the Australian aseasonal-wet biome from the Mid-Cenozoic. In the sclerophyll biomes, there have been multiple exchanges between the southwest and southeast, rather than single large endemic radiations after a vicariance event. There is need for rigorous molecular phylogenetic studies so that additional questions can be addressed, such as how interactions between biomes may have driven the speciation process during radiations. New studies should include the hither-to neglected monsoonal tropics.
Resumo:
In this study, oral carcinoma cells were used to evaluate chloroaluminum-phthalocyanine encapsulated in liposomes as the photosensitizer agent in support of photodynamic therapy (PDT). The genotoxicity and cytotoxicity behavior of the encapsulated photosensitizer in both dark and under irradiation using the 670-nm laser were investigated with the classical trypan blue cell viability test, the acridine orange/ethidium bromide staining organelles test, micronucleus formation frequency, DNA fragmentation, and cell morphology. The cell morphology investigation was carried out using light and electronic microscopes. Our findings after PDT include reduction in cell viability (95%) associated with morphologic alterations. The neoplastic cell destruction was predominantly started by a necrotic process, according to the assay with acridine orange and ethidium bromide, and this was confirmed by electronic microscopy analysis. Neither the PDT agent nor laser irradiation alone showed cytotoxicity, genotoxicity, or even morphologic alterations. Our results reinforce the efficiency of tight-irradiated chloroaluminum-phthalocyanine in inducing a positive effect of PDT. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Nanostructured drug delivery systems (NDDS), such as liposomes, represent a growing area in biomedical research. These microheterogeneous media can be used in many biological systems to provide appropriate drug levels with a specific biodistribution. The photophysical properties of a silicon derivative of tribenzonaphthoporphyrazinato (Si-tri-PcNc) incorporated into liposome were studied by steady-state techniques, time-resolved fluorescence and laser flash photolysis. All the spectroscopy measurements performed allowed us to conclude that Si-tri-PcNc in liposome is a promising NDDS for PDT The in vitro experiments with liposomal NDDS showed that the system is not cytotoxic in darkness, but exhibits a substantial phototoxicity at 1 mu M of photosensitizer concentration and 10.0 J/cm(2) of light. These conditions are sufficient to kill about 80% of the cells.
Resumo:
Unloaded microspheres were prepared from polyhydroxybutyrate-co-valerate (PHBHV) and poly(epsilon-caprolactone) (PCL) polymers using the emulsification-solvent evaporation method (EE). The study was conducted to determine the ideal polymeric composition and ideal molecular weight for the microspheres preparation to be used as a Drug Delivery System (DDS) for cancer therapy. In this work, NzPC, a new photosensitizer, has been investigated when incorporated into microspheres of PHBHV/PCL evaluating its application for Photodynamic Therapy (PDT) of neoplastic tissue. The biodegradation studies were conducted to analyze the effects of the incorporation of the NzPC and also to determine the release profiles in vitro condition. We also evaluated the dark toxicity and the photobiological effect of the PHBHV-PCL microspheres in cutaneous melanoma cell line (B-16-A1) used as a biological neoplastic medium.
Resumo:
Phylogenetic trees can provide a stable basis for a higher-level classification of organisms that reflects evolutionary relationships. However, some lineages have a complex evolutionary history that involves explosive radiation or hybridisation. Such histories have become increasingly apparent with the use of DNA sequence data for phylogeny estimation and explain, in part, past difficulties in producing stable morphology-based classifications for some groups. We illustrate this situation by using the example of tribe Mirbelieae (Fabaceae), whose generic classification has been fraught for decades. In particular, we discuss a recent proposal to combine 19 of the 25 Mirbelieae genera into a single genus, Pultenaea sens. lat., and how we might find stable and consistent ways to squeeze something as complex as life into little boxes for our own convenience. © CSIRO.
Resumo:
There is emerging evidence to support the effectiveness of cognitive behavior therapy (CBT) for older adults. However, there are a number of clinical difficulties that practitioners often encounter when using homework assignments with the older adult population. In this article, we provide a brief summary of the research findings on homework in CBT, review common obstacles to the use of homework, and provide concrete suggestions for the adaptation of homework assignments to increase their potential effectiveness with older adults. We also describe several types of homework assignments that may be most helpful, augmenting these suggestions with clinical examples.
Resumo:
Phylogenetic hypotheses are presented for Pultenaea based on cpDNA (trnL-F and ndhF) and nrDNA ( ITS) sequence data. Pultenaea, as it is currently circumscribed, comprises six strongly supported lineages whose relationships with each other and 18 closely related genera are weak or conflicting among datasets. The lack of resolution among the six Pultenaea clades and their relatives appears to be the result of a rapid radiation, which is evident in molecular data from both the chloroplast and nuclear genomes. The molecular data provide no support for the monophyly of Pultenaea as it currently stands. Given these results, Pultenaea could split into many smaller genera. We prefer the taxonomically stable alternative of subsuming all 19 genera currently recognised in Pultenaea sensu lato (= the Mirbelia group) into an expanded concept of Pultenaea that would comprise similar to 470 species.
Resumo:
The aim of this study was to evaluate the effects of the photodynamic therapy (PDT) on the inflammatory infiltrate and on the collagen network organization in human advanced chronic periodontitis Two different drug delivery systems (DDS) were tested (liposomes and nanoemulsions) to determine if the effects of PDT could differ according to the DDS used Sixteen patients presenting two teeth with chronic advanced periodontitis and Important tooth mobility with clinical indication of extraction were included in the group liposomes (group L n = 8) or in the group nanoemulsions (group N n = 8) in order to compare the effects of each DDS Seven days before extractions one tooth of each patient was treated with PDT using phthalocyanine derivatives as photosensitizers and the contralateral tooth was taken as control In group L the density of gingival collagen fibers (66 +/- 19%) was significantly Increased (p < 0 02) when compared to controls (35 +/- 21%) Concerning the antigen-presenting cells PDT had differential effects depending on the drug delivery system the number of macrophages was significantly decreased (p < 0 05) in group L while the number of Langerhans cells was significantly decreased in group N (p < 0 02) These findings demonstrate that PDT presents an impact on gingival Inflammatory phenomenon during chronic periodontitis and leads to a specific decrease of antigen-presenting cells populations according to the drug delivery system used (C) 2010 Elsevier B V All rights reserved
Resumo:
Using synchrotron radiation, we combined simultaneously wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) techniques to obtain the scattering profiles of normal and neoplastic breast tissu-es samples at the momentum transfer range 6.28 nm(-1) <= Q(=4 pi.sin(theta/2)lambda) <= 50.26 nm(-1) and 0.15 nm(-1) <= Q <= 1.90 nm(-1), respectively. The results obtained show considerable differences between the scattering profiles of these tissues. We verified that the combination of some parameters (ratio between glandular and adipose peak intensity and third-order axial peak intensity) extracted from scattering profiles can be used for identifying breast cancer. (c) 2009 Elsevier Ltd. All rights reserved.
The states, diffusion, and concentration distribution of water in radiation-formed PVA/PVP hydrogels
Resumo:
Hydrogels with various compositions of polyvinyl alcohol (PVA) and poly(1-vinyl-2-pyrrolidinone) (PVP) were prepared by irradiating mixtures of PVA and PVP in aqueous solutions with gamma-rays from Co-60 sources at room temperature. The states of water in the hydrogels were characterized using DSC and NMR T-2 relaxation measurements and the kinetics of water diffusion in the hydrogels were studied by sorption experiments and NMR imaging. The DSC endothermic peaks in the temperature range -10 to +10 degrees C implied that there are at least two kinds of freezable water present in the matrix. The difference between the total water content and the freezable water content was refer-red to as bound water, which is not freezable. The weight fraction of water at which only nonfreezable water is present in a hydrogel with F-VP = 0.19 has been estimated to be g(H2O)/g(Polymer) = 0.375. From water sorption experiments, it was demonstrated that the early stage of the diffusion of water into the hydrogels was Fickian. A curve-fit of the early-stage experimental data to the Fickian model allowed determination of the water diffusion coefficient, which was found to lie between 1.5 x 10(-11) m(2) s(-1) and 4.5 x 10(-11) m(2) s(-1), depending on the polymer composition, the cross-link density, and the temperature. It was also found that the energy barrier for diffusion of water molecules into PVA/PVP hydrogels was approximate to 24 kJ mol(-1). Additionally, the diffusion coefficients determined from NMR imaging of the volumetric swelling of the gels agreed well with the results obtained by the mass sorption method.
Resumo:
The risk of breast cancer arises from a combination of genetic susceptibility and environmental factors. Recent studies show that type and duration of use of hormone replacement therapy affect a women's risk of developing breast cancer.1-7 The women's health initiative trial was stopped early because of excess adverse cardiovascular events and invasive breast cancer with oestrogen and progestogen.6 The publicity increased public awareness of the risks of hormone replacement therapy, and this was heightened by the publication of the million women study.2 However, the recently published oestrogen only arm of the women's health initiative trial suggests that this formulation may reduce the risk of breast cancer.8 To help make sense of the often confusing information,9 women and clinicians need individual rather than population risk data. We have produced estimates that can be used to calculate individual risk for women living up to the age of 79 and suggest the risk