979 resultados para PP waves
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Films of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(propylene) (PP), PP/PHBV (4:1), blends were prepared by melt-pressing and investigated with respect to their microbial degradation in soil after 120 days. Biodegradation of the films was evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The biodegradation and/or bioerosion of the PP/PHBV blend was attributed to microbiological attack, with major changes occurring at the interphases of the homopolymers. The PHBV film was more strongly biodegraded in soil, decomposing completely in 30 days, while PP film presented changes in amorphous and interface phase, which affected the morphology.
Resumo:
We consider formation of dissipationless shock waves in Bose-Einstein condensates with repulsive interaction between atoms. It is shown that for big enough initial inhomogeneity of density, interplay of nonlinear and dispersion effects leads to wave breaking phenomenon followed by generation of a train of dark solitons. Analytical theory is confirmed by numerical simulations.
Resumo:
In the limit of small values of the aspect ratio parameter (or wave steepness) which measures the amplitude of a surface wave in units of its wave-length, a model equation is derived from the Euler system in infinite depth (deep water) without potential flow assumption. The resulting equation is shown to sustain periodic waves which on the one side tend to the proper linear limit at small amplitudes, on the other side possess a threshold amplitude where wave crest peaking is achieved. An explicit expression of the crest angle at wave breaking is found in terms of the wave velocity. By numerical simulations, stable soliton-like solutions (experiencing elastic interactions) propagate in a given velocities range on the edge of which they tend to the peakon solution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The absorption cross section of black holes has been investigated for various fields. Nevertheless, the absorption cross section of Schwarzschild black holes for the electromagnetic field has been only calculated in the low- and high-frequency approximations until now. Here we compute it numerically for arbitrary frequencies.
Resumo:
In this Letter new aspects of string theory propagating in a pp-wave time dependent background with a null singularity are explored. It is shown the appearance of a 2d entanglement entropy dynamically generated by the background. For asymptotically flat observers, the vacuum close to the singularity is unitarily inequivalent to the vacuum at tau = -infinity and it is shown that the 2d entanglement entropy diverges close to this point. As a consequence. The positive time region is inaccessible for observers in tau = -infinity. For a stationary measure, the vacuum at finite time is seen by those observers as a thermal state and the information loss is encoded as a heat bath of string states. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Limits are set on anomalous WW gamma and WWZ trilinear gauge couplings using W+W--> e(+)nu(e)e(-)(nu) over bar (e), W+W--> e(+/-)nu(e)mu(-/+)nu(mu), and W+W-->mu(+)nu(mu)mu(-)(nu) over bar (mu) events. The data set was collected by the Run II D0 detector at the Fermilab Tevatron Collider and corresponds to approximately 250 pb(-1) of integrated luminosity at root s=1.96 TeV. Under the assumption that the WW gamma couplings are equal to the WWZ couplings and using a form factor scale of Lambda=2.0 TeV, the combined 95% C.L. one-dimensional coupling limits from all three channels are -0.32
Resumo:
A thermodynamical analysis for the type IIB superstring in a pp-wave background is considered. The thermal Fock space is built and the temperature SUSY breaking appears naturally by analyzing the thermal vacuum. All the thermodynamical quantities are derived by evaluating matrix elements of operators in the thermal Fock space. This approach seems to be suitable to study thermal effects in the BMN correspondence context. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present a search for electroweak production of single top quarks in the s-channel and t-channel using neural networks for signal-background separation. We have analyzed 230 pb(-1) of data collected with the DO detector at the Fermilab Tevatron Collider at a center-of-mass energy of 1.96 TeV and find no evidence for a single top quark signal. The resulting 95% confidence level upper limits on the single top quark production cross sections are 6.4 pb in the s-channel and 5.0 ph in the t-channel. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We study the propagation of waves in an elastic tube filled with an inviscid fluid. We consider the case of inhomogeneity whose mechanical and geometrical properties vary in space. We deduce a system of equations of the Boussinesq type as describing the wave propagation in the tube. Numerical simulations of these equations show that inhomogeneities prevent separation of right-going from left-going waves. Then reflected and transmitted coefficients are obtained in the case of localized constriction and localized rigidity. Next we focus on wavetrains incident on various types of anomalous regions. We show that the existence of anomalous regions modifies the wavetrain patterns. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Using the mean-field time-dependent Gross-Pitaevskii equation we study the formation of a repulsive Bose-Einstein condensate on a combined optical and harmonic traps in two and three dimensions and subsequent generation of the interference pattern upon the removal of the combined traps as in the experiment by, Greiner et al. [Nature (London 415 (2002) 39]. For optical traps of moderate strength, interference pattern of 27 (9) prominent bright spots is found to be formed in three. (two) dimensions on a cubic (square) lattice in agreement with experiment. Similar interference pattern can also be formed upon removal of the optical lattice trap only. The pattern so formed can oscillate for a long time in the harmonic trap which can be observed experimentally. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
We shall consider a coupled nonlinear Schrodinger equation- Bloch system of equations describing the propagation of a single pulse through a nonlinear dispersive waveguide in the presence of resonances; this could be, for example, a doped optical fibre. By making use of the integrability of the dynamic equations, we shall apply the finite-gap integration method to obtain periodic solutions for this system. Next, we consider the problem of the formation of solitons at a sharp front pulse and, by means of the Whitham modulational theory, we derive the amplitude and velocity of the largest soliton.
Resumo:
The problem of generation of atomic soliton trains in elongated Bose-Einstein condensates is considered in framework of Whitham theory of modulations of nonlinear waves. Complete analytical solution is presented for the case when the initial density distribution has sharp enough boundaries. In this case the process of soliton train formation can be viewed as a nonlinear Fresnel diffraction of matter waves. Theoretical predictions are compared with results of numerical simulations of one- and three-dimensional Gross-Pitaevskii equation and with experimental data on formation of Bose-Einstein bright solitons in cigar-shaped traps. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Periodic waves are investigated in a system composed of a Kuramoto-Sivashinsky-Korteweg-de Vries (KS-KdV) equation linearly coupled to an extra linear dissipative one. The model describes, e.g., a two-layer liquid film flowing down an inclined plane. It has been recently shown that the system supports stable solitary pulses. We demonstrate that a perturbation analysis, based on the balance equation for the net field momentum, predicts the existence of stable cnoidal waves (CnWs) in the same system. It is found that the mean value u(0) of the wave field u in the main subsystem, but not the mean value of the extra field, affects the stability of the periodic waves. Three different areas can be distinguished inside the stability region in the parameter plane (L, u(0)), where L is the wave's period. In these areas, stable are, respectively, CnWs with positive velocity, constant solutions, and CnWs with negative velocity. Multistability, i.e., the coexistence of several attractors, including the waves with several maxima per period, appears at large value of L. The analytical predictions are completely confirmed by direct simulations. Stable waves are also found numerically in the limit of vanishing dispersion, when the KS-KdV equation goes over into the KS one.
Resumo:
We present a search for Wb (b) over bar production in p (p) over bar collisions at root s=1.96 TeV in events containing one electron, an imbalance in transverse momentum, and two b-tagged jets. Using 174 pb(-1) of integrated luminosity accumulated by the D0 experiment at the Fermilab Tevatron collider, and the standard-model description of such events, we set a 95% C.L. upper limit on Wb (b) over bar production of 6.6 pb for b quarks with transverse momenta p(T)(b)> 20 GeV and b (b) over bar separation in pseudorapidity-azimuth space Delta R-bb> 0.75. Restricting the search to optimized b (b) over bar mass intervals provides upper limits on WH production of 9.0-12.2 pb for Higgs-boson masses of 105-135 GeV.