861 resultados para POLY(ETHYLENE OXIDE) BLENDS
Resumo:
O consumo de plantas medicinais no país tem aumentado de maneira significativa nas últimas décadas. Dados da Organização mundial de Saúde estimam que 80% da população mundial usam plantas medicinais como alternativa terapêutica. No entanto, pouca informação se encontra disponível sobre os constituintes dos mesmos, bem como sobre o potencial de riscos à saúde humana. Assim, questões relacionadas à qualidade dessas drogas apresentam fundamental importância. Em função de sua origem, a carga microbiana detectada em drogas vegetais pode ser considerada normalmente elevada, oferecendo riscos potenciais ao usuário. Desta forma, a avaliação de sua qualidade sanitária bem como a utilização de processos descontaminantes constituem-se em etapas importantes no que se refere ao aspecto de segurança ao consumidor. Portanto o objetivo deste trabalho foi a determinação dos níveis de contaminação, a pesquisa de indicadores patogênicos; além da eficácia da exposição de 30 e 60 minutos ao gás óxido de etileno, a determinação de residuais tóxicos e a verificação de possíveis alterações nos níveis de marcadores em amostras de Matricaria recutita L., Cynara scolimus L., Paulinia cupana H.B.K. e Ginkgo biloba L. proveniente de três fornecedores diferentes. Todas as drogas vegetais analisadas continham elevados níveis de bactérias e fungos, na ordem de 105 ufc/g, além de terem sido detectados microrganismos patogênicos nas amostras estudadas. Entretanto após a exposição destas por 30 e 60 minutos ao gás óxido de etileno, observou-se a eliminação de cerca de 90% e 99,8% respectivamente. No que se refere aos patógenos específicos a exposição de 30 minutos foi capaz de eliminá-los completamente. Os níveis residuais de óxido de etileno nas drogas vegetais analisadas, foram reduzidos a índices aceitáveis após 14 dias de aeração ambiental, já os níveis de etilenoglicol e etilenocloridrina mantiveram-se dentro do limite da sensibilidade do método adotado. Com relação à análise de principios ativos naturais, não houve alteração nas concentrações dos marcadores das drogas vegetais camomila, ginkgo biloba e guaraná analisadas mesmo após ciclo de exposição de 60 minutos ao gás óxido de etileno. Sendo assim verifica-se a necessidade da adoção de métodos de descontaminação microbiana com o intuito de fornecer um produto mais seguro para o consumo humano visto que estes são por vezes consumidos por enfermos, idosos e crianças com a saúde comprometida. Pode-se concluir também que o processo de descontaminação de drogas vegetais por óxido de etileno é um processo eficaz e seguro, desde que sejam adotados os requisitos de segurança necessários que infelizmente, nem sempre são adotadas no mercado nacional
Resumo:
A prática da reutilização de produtos médico-hospitalares de uso único vem sendo aplicada desde meados da década de setenta. A principal razão que tem contribuído para disseminação desta conduta pelas instituições hospitalares radicadas tanto nos países em desenvolvimento como naqueles considerados ricos, tem sido a aparente economia de custos. Apesar dos riscos relacionados com a prática da reutilização, como reações pirogênicas, danos ocasionados por bactérias consideradas patogênicas em pacientes imunologicamente comprometidos, danos na integridade fisica dos produtos, assim como aumento do período de permanência dos pacientes no hospital, têm despertado o interesse em avaliar aspectos fisicos e biológicos dos produtos médico-hospitalares reutilizados. Baseando-se nestas considerações foram aplicados desafios com esporos de Bacillus Subtilis varo niger ATCC 9372 e endotoxina bacteriana E. coli 055:B5. Os produtos desafiados foram cateteres intravenosos, torneira três vias e tubos de traqueostomia. A possível presença microbiana foi investigada após contaminação intencional dos esporos de B. Subtillis (107 ufc/unid.) com submissão das unidades contaminadas à limpeza e posterior esterilização, utilizando óxido de etileno/CFC na proporção 12:88. Os ciclos de reprocessamentos simulados de produtos médico-hospitalares consistiram de contaminação de cada unidade teste com carga microbiana, lavagem com detergente enzimático, secagem e esterilização. Ao término de cada ciclo de reprocessamento foram separadas unidades representativas para avaliação por contagem microbiana (pour plate), testes de esterilidade por inoculação direta e indireta, citotoxidade por cultura de células e microscopia eletrônica de varredura. A eficiência da esterilidade foi avaliada tanto por contagem microbiana como pelos testes de esterilidade, que resultaram em níveis microbianos de 103 ufc/unid. e detecção de contaminação até o 6° ciclo de reprocessamento nos cateteres intravenosos, tubos de traqueostomia e torneiras três vias. A segurança dos reprocessamentos dos produtos médico-hospitalares foi avaliada pela cultura de células de fibroblastos de camundongo (NCTC clone 929), as quais não apresentaram toxicidade. Entretanto, os resultados obtidos durante microscopia eletrônica de varredura comprovaram presença de carga microbiana após 10° ciclo de reprocessamento, assim como danos na superficie polimérica. Durante desafio com endotoxina bacteriana, que consistiu em contaminar as unidades com 200 UE, secagem e exposição ao ciclo de esterilização com óxido de etileno/CFC (12:88), verificou-se que após ciclos de reprocessamentos simulados, totalizando dez ciclos, foi possível detectar valores de recuperação de endotoxina em torno de 100%. Os cateteres-guia que foram adquiridos em instituição hospitalar após quatro reutilizações, apresentaram níveis de contaminação de 105 ufc/unid., assim como presença de bactérias consideradas patogênicas em pacientes comprometidos imunologicamente, já a detecção de endotoxina bacteriana nestes cateteres não foi considerada significativa. Logo, as avaliações aplicadas nas unidades submetidas aos ciclos de reprocessamentos simulados, assim como nos cateteres-guia reprocessados e reutilizados quatro vezes, refletiram a realidade de algumas instituições no âmbito nacional e internacional que praticam a reutilização de produtos médico-hospitalares de uso-único. Os resultados obtidos vêm enfatizar objeções quanto à prática da reutilização, considerando que a ausência de segurança pode ocasionar em danos ao paciente.
Resumo:
The transitions and reactions involved in the thermal processing of binary mixtures of polyethylene and poly(ethylene-co-vinyl acetate) copolymers with different concentrations of a foaming agent (azodicarbonamide) were studied using differential scanning calorimetry (DSC). The effect of ZnO as a kicker also was discussed. The temperature at the maximum rate and the heat evolved were measured for all the processes—melting, transitions, and reactions—all the mixtures prepared were measured and compared. Azodicarbonamide decomposed differently depending on the polymeric matrix. These data can be very useful for the plastic processing industry.
Resumo:
L’électrofilage est une technique de mise en œuvre efficace et versatile qui permet la production de fibres continues d’un diamètre typique de quelques centaines de nanomètres à partir de l’application d’un haut voltage sur une solution concentrée de polymères enchevêtrés. L’évaporation extrêmement rapide du solvant et les forces d’élongation impliquées dans la formation de ces fibres leur confèrent des propriétés hors du commun et très intéressantes pour plusieurs types d’applications, mais dont on commence seulement à effleurer la surface. À cause de leur petite taille, ces matériaux ont longtemps été étudiés uniquement sous forme d’amas de milliers de fibres avec les techniques conventionnelles telles que la spectroscopie infrarouge ou la diffraction des rayons X. Nos connaissances de leur comportement proviennent donc toujours de la convolution des propriétés de l’amas de fibres et des caractéristiques spécifiques de chacune des fibres qui le compose. Les études récentes à l’échelle de la fibre individuelle ont mis en lumière des comportements inhabituels, particulièrement l’augmentation exponentielle du module avec la réduction du diamètre. L’orientation et, de manière plus générale, la structure moléculaire des fibres sont susceptibles d’être à l'origine de ces propriétés, mais d’une manière encore incomprise. L’établissement de relations structure/propriétés claires et l’identification des paramètres qui les influencent représentent des défis d’importance capitale en vue de tirer profit des caractéristiques très particulières des fibres électrofilées. Pour ce faire, il est nécessaire de développer des méthodes plus accessibles et permettant des analyses structurales rapides et approfondies sur une grande quantité de fibres individuelles présentant une large gamme de diamètre. Dans cette thèse, la spectroscopie Raman confocale est utilisée pour l’étude des caractéristiques structurales, telles que l’orientation moléculaire, la cristallinité et le désenchevêtrement, de fibres électrofilées individuelles. En premier lieu, une nouvelle méthodologie de quantification de l’orientation moléculaire par spectroscopie Raman est développée théoriquement dans le but de réduire la complexité expérimentale de la mesure, d’étendre la gamme de matériaux pour lesquels ces analyses sont possibles et d’éliminer les risques d’erreurs par rapport à la méthode conventionnelle. La validité et la portée de cette nouvelle méthode, appelée MPD, est ensuite démontrée expérimentalement. Par la suite, une méthodologie efficace permettant l’étude de caractéristiques structurales à l’échelle de la fibre individuelle par spectroscopie Raman est présentée en utilisant le poly(éthylène téréphtalate) comme système modèle. Les limites de la technique sont exposées et des stratégies expérimentales pour les contourner sont mises de l’avant. Les résultats révèlent une grande variabilité de l'orientation et de la conformation d'une fibre à l'autre, alors que le taux de cristallinité demeure systématiquement faible, démontrant l'importance et la pertinence des études statistiques de fibres individuelles. La présence de chaînes montrant un degré d’enchevêtrement plus faible dans les fibres électrofilées que dans la masse est ensuite démontrée expérimentalement pour la première fois par spectroscopie infrarouge sur des amas de fibres de polystyrène. Les conditions d'électrofilage favorisant ce phénomène structural, qui est soupçonné d’influencer grandement les propriétés des fibres, sont identifiées. Finalement, l’ensemble des méthodologies développées sont appliquées sur des fibres individuelles de polystyrène pour l’étude approfondie de l’orientation et du désenchevêtrement sur une large gamme de diamètres et pour une grande quantité de fibres. Cette dernière étude permet l’établissement de la première relation structure/propriétés de ces matériaux, à l’échelle individuelle, en montrant clairement le lien entre l’orientation moléculaire, le désenchevêtrement et le module d'élasticité des fibres.
Resumo:
L’électrofilage est une technique de mise en œuvre efficace et versatile qui permet la production de fibres continues d’un diamètre typique de quelques centaines de nanomètres à partir de l’application d’un haut voltage sur une solution concentrée de polymères enchevêtrés. L’évaporation extrêmement rapide du solvant et les forces d’élongation impliquées dans la formation de ces fibres leur confèrent des propriétés hors du commun et très intéressantes pour plusieurs types d’applications, mais dont on commence seulement à effleurer la surface. À cause de leur petite taille, ces matériaux ont longtemps été étudiés uniquement sous forme d’amas de milliers de fibres avec les techniques conventionnelles telles que la spectroscopie infrarouge ou la diffraction des rayons X. Nos connaissances de leur comportement proviennent donc toujours de la convolution des propriétés de l’amas de fibres et des caractéristiques spécifiques de chacune des fibres qui le compose. Les études récentes à l’échelle de la fibre individuelle ont mis en lumière des comportements inhabituels, particulièrement l’augmentation exponentielle du module avec la réduction du diamètre. L’orientation et, de manière plus générale, la structure moléculaire des fibres sont susceptibles d’être à l'origine de ces propriétés, mais d’une manière encore incomprise. L’établissement de relations structure/propriétés claires et l’identification des paramètres qui les influencent représentent des défis d’importance capitale en vue de tirer profit des caractéristiques très particulières des fibres électrofilées. Pour ce faire, il est nécessaire de développer des méthodes plus accessibles et permettant des analyses structurales rapides et approfondies sur une grande quantité de fibres individuelles présentant une large gamme de diamètre. Dans cette thèse, la spectroscopie Raman confocale est utilisée pour l’étude des caractéristiques structurales, telles que l’orientation moléculaire, la cristallinité et le désenchevêtrement, de fibres électrofilées individuelles. En premier lieu, une nouvelle méthodologie de quantification de l’orientation moléculaire par spectroscopie Raman est développée théoriquement dans le but de réduire la complexité expérimentale de la mesure, d’étendre la gamme de matériaux pour lesquels ces analyses sont possibles et d’éliminer les risques d’erreurs par rapport à la méthode conventionnelle. La validité et la portée de cette nouvelle méthode, appelée MPD, est ensuite démontrée expérimentalement. Par la suite, une méthodologie efficace permettant l’étude de caractéristiques structurales à l’échelle de la fibre individuelle par spectroscopie Raman est présentée en utilisant le poly(éthylène téréphtalate) comme système modèle. Les limites de la technique sont exposées et des stratégies expérimentales pour les contourner sont mises de l’avant. Les résultats révèlent une grande variabilité de l'orientation et de la conformation d'une fibre à l'autre, alors que le taux de cristallinité demeure systématiquement faible, démontrant l'importance et la pertinence des études statistiques de fibres individuelles. La présence de chaînes montrant un degré d’enchevêtrement plus faible dans les fibres électrofilées que dans la masse est ensuite démontrée expérimentalement pour la première fois par spectroscopie infrarouge sur des amas de fibres de polystyrène. Les conditions d'électrofilage favorisant ce phénomène structural, qui est soupçonné d’influencer grandement les propriétés des fibres, sont identifiées. Finalement, l’ensemble des méthodologies développées sont appliquées sur des fibres individuelles de polystyrène pour l’étude approfondie de l’orientation et du désenchevêtrement sur une large gamme de diamètres et pour une grande quantité de fibres. Cette dernière étude permet l’établissement de la première relation structure/propriétés de ces matériaux, à l’échelle individuelle, en montrant clairement le lien entre l’orientation moléculaire, le désenchevêtrement et le module d'élasticité des fibres.
Resumo:
Published polymer distribution data for aqueous poly(ethylene glycol)/dextran mixtures have been reassessed to illustrate the feasibility of their quantitative characterization in terms of the Flory-Huggins theory of polymer thermodynamics. Phase diagrams predicted by this characterization procedure provide better descriptions of the experimental data than those based on an earlier, oversimplified treatment in similar terms. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The chemical structure, synthesis, morphology, and properties of polyurethane elastomers are briefly discussed. The current understanding of the effect of chemical structure and the associated morphology on the stability of polyurethanes in the biological environments is reviewed. The degradation of conventional polyurethanes appears as surface or deep cracking, stiffening, and deterioration of mechanical properties, such as flex-fatigue resistance. Polyester and poly( tetramethylene oxide) based polyurethanes degrade by hydrolytic and oxidative degradation of ester and ether functional groups, respectively. The recent approaches to develop polyurethanes with improved long-term biostability are based on developing novel polyether, hydrocarbon, polycarbonate, and siloxane macrodiols to replace degradation-prone polyester and polyether macrodiols in polyurethane formulations. The new approaches are discussed with respect to synthesis, properties and biostability based on reported in vivo studies. Among the newly developed materials, siloxane-based polyurethanes have exhibited excellent biostability and are expected to find many applications in biomedical implants.
Resumo:
The extent of swelling of cross-linked poly(dimethylsiloxane) and linear low-density poly(ethylene) in supercritical CO2 has been investigated using high-pressure NMR spectroscopy and microscopy. Poly(dimethylsiloxane) was cross-linked to four different cross-link densities and swollen in supercritical CO2. The Flory-Huggins interaction parameter, x, was found to be 0.62 at 300 bar and 45 degrees C, indicating that supercritical CO2 is a relatively poor solvent compared to toluene or benzene. Linear low-density poly(ethylene) was shown to exhibit negligible swelling upon exposure to supercritical CO2 up to 300 bar. The effect Of CO2 pressure on the amorphous region of the poly(ethylene) was investigated by observing changes in the H-1 T-2 relaxation times of the polymer. These relaxation times decreased with increasing pressure, which was attributed to a decrease in mobility of the polymer chains as a result of compressive pressure.
Resumo:
Although cytosolic glutathione S-transterase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes. GST1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GsTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals. e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence Suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestivc tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.
Resumo:
Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small-angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress-strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. (c) 2006 Wiley Periodicals, Inc.
Resumo:
We demonstrate a single-step method for the generation of collagen and poly-l-Lysine (PLL) micropatterns on a poly(ethylene glycol) (PEG) functionalized glass surface for cell based assays. The method involves establishing a reliable silanization method to create an effective non-adhesive PEG layer on glass that inhibits cell attachment, followed by the spotting of collagen or PLL solutions using non-contact piezoelectric printing. We show for the first time that the spotted protein micropatterns remain stable on the PEG surface even after extensive washing, thus significantly simplifying protein pattern formation. We found that adherence and spreading of NIH-3T3 fibroblasts was confined to PLL and collagen areas of the micropatterns. In contrast, primary rat hepatocytes adhered and spread only on collagen micropatterns, where they formed uniform, well defined functionally active cell arrays. The differing affinity of hepatocytes and NIH-3T3 fibroblasts for collagen and PLL patterns was used to develop a simple technique for creating a co-culture of the two cell types. This has the potential to form structured arrays that mimic the in vivo hepatic environment and is easily integrated within a miniaturized analytical platform for developing high throughput toxicity analysis in vitro.
Resumo:
The effects of ester plasticizers and copolymers on the mechanical properties of the natural biodegradable polymers, poly(3-hydroxybutyrate) [PHB] and poly(lactic acid) [PLA] have been studied after subjecting to melt processing conditions. Ester plasticizers were synthesized from citric, tartaric and maleic acids using various alcohols. A variety of PLA copolymers have also been prepared from poly(ethylene glycol) derivatives using stannous octanoate catalysed ring opening polymerisations of DL-lactide. A novel PLA star copolymer was also prepared from an ethoxylated pentaerythritol. The structures of these copolymers were determined by NMR spectroscopy. The plasticizing effect of the synthesised additives at various concentrations was determined. While certain additives were capable of improving the mechanical properties of PLA, none were effective in PHB. Moreover, it was found that certain combinations of additives exhibited synergistic effects. Possible mechanisms are discussed. Biotic and abiotic degradation studies showed that the plasticizers (esters and copolymers) did not inhibit the biodegradability of PHB or PLA in compost at 60°C. Simple toxicity tests carried out on compost extract and its ability to support the growth of cress seeds was established. PLA was found to be susceptible to limited thermal degradation under melt processing conditions. Conventional phenolic antioxidants showed no significant effect on this process, suggesting that degradation was not predominantly a free radical process. PLA also underwent photo-oxidative degradation with UV light and the process could be accelerated in the presence of a photoactivator such as iron (III) diisononyl dithiocarbamate. The mechanisms for the above processes are discussed. Finally, selected compounds were prepared on a pilot plant scale. Extruded and blown films were prepared containing these additives with conventional polymer processing equipment. The mechanical properties were similar to those obtained with laboratory produced compression moulded films.
Resumo:
The aims of this project were:1) the synthesis of a range of new polyether-based vinylic monomers and their incorporation into poly(2-hydroxyethyl methacrylate) (poly(HEMA)) based hydrogel networks, of interest to the contact lens industry.2) the synthesis of a range of alkyltartronic acids, and their derivatives. These molecules may ultimately be used to produce functionalised poly(-hydroxy acids) of potential interest in either drug delivery or surgical suture applications. The novel syntheses of a range of both methoxy poly(ethylene glycol) acrylates (MPEGAs) and poly(ethylene glycol) acrylates (PEGAs) are described. Products were obtained in very good yields. These new polyether-based vinylic monomers were copolymerised with 2-hydroxyethyl methacrylate (HEMA) to produce a range of hydrogels. The equilibrium water contents (EWC) and surface properties of these copolymers containing linear polyethers were examined. It was found that the EWC was enhanced by the presence of the hydrophilic polyether chains.Results suggest that the polyether side chains express themselves at the polymer surface, thus dictating the surface properties of the gels. Consequentially, this leads to an advantageous reduction in the surface adhesion of biological species. A synthesis of a range of alkyltartronic acids is also described. The acids prepared were obtained in very good yields using a novel four-stage synthesis. These acids were modified to give potassium monoethyl alkyltartronates. Although no polyesterification is described in this thesis, these modified alkyltartronic acid derivatives are considered to be potentially excellent starting materials for poly (alkyltartronic acid) synthesis via anhydrocarboxylate or anhydrosulphite cyclic monomers.
Resumo:
The research described in this thesis explored the synthesis tlnd characteristltion of biocompatible and biodegradable polymers of lactide through non-toxic titanium alkoxide nitiators. The research objectives focused on the preparation of polylactides in both solvent and solventless media, to produce materials with a wide range of molecular weights. The polylactides were fully characterised using gel permeation chromatography and 1H and 13C NMR spectroscopy. NMR spectroscopy was carried out in the study the reaction mechanisms. Kinetic studies of the ring opening polymerisation of lactide with titanium alkoxide initiators were also conducted using NMR spectroscopy. The objectives of this research were also focused on the enhancement of the flexibility of the polymer chains by synthesising random and block copolymers of lactide and ε-caprolactone using Ti(0-i-Pr)4 as an initiator, This work involved extensive characterisalion of the synthesised copolymers using gel permeation chromatography and 1H and 13C NMR spectroscopic analysis. Kinetic studies of the ring opening polymerisation of ε-caplrolactone and of the copolymerisation of lactide and ε-caprolactone with Ti(O-i-Pr)4 as an initiator were also carried out. The last section of this work involved the synthesis of block and star-shaped copolymers of lactide and poly(ethylene glycol) [PEG]. The preparation of lactide/PEG block copolymers was carried out by ring opening polymerisation of L-Iactide using Ti(O-i-Pr)4 as an initiator and hydroxyl-terminated PEG's with different numbers of hydroxyl groups as co-initiators both in solution and solventless media. These all-in-one polymersations yielded the synthesis of both lactide homopolymer and lactide/PEG block copolymer. In order to selectively synthesise copolymers of lactide and PEG, the experiment was carried out in two steps. The first step consisted of the synthesis of a titanium macro-initiator by exchanging the iso-propoxide ligands by PEG with different numbers of hydroxyl groups. The second step involved the ring opening polymerisation of lactide using the titanium macrocatalyst that was prepared as an initiator. The polymerisations were carried out in a solventless media. The synthesis of lactide/PEG copolymers using polyethylene glycol with amino terminal groups was also discussed. Extensive characterisation of the lactide block copolymers and macroinitiators was carried out using techniques such as, gel permeation chromatography (GPC), NMR spectroscopy and differential scanning calorimeter (DeS).
Resumo:
The dielectric properties of pure low to medium molecular weight poly(ethylene glycol) and poly(propylene glycol) and a variety of their salt complexes have been studied through the measurement of the dielectric permittivity and dielectric loss over a range of frequency and temperature. The major proportion of this study has been concerned with the examination of the nature of the interaction between mercuric chloride and poly(propylene glycol) (PPG). Other salt-poly-ether combinations have also been considered such as cobalt chloride-PPG cadmium chloride-PPG zinc chloride-PPG and ferric chloride-PEG (polyethylene glycol). Some of this work was also supported by chemical shift and spin-lattice Nuclear Magnetic Resonance (N.M.R.) spectroscopy. The dielectric permittivity data were analysed using the Onsager relation to calculate the mean dipole moment per dipolar unit. This approach was employed in the discussion of various models proposed for the structure of salt-polyether complexes. The effect of mercuric chloride on the statistical conformations of poly(propylene-glycol) was studied in a quantitative manner using the relationships of marchal-Benoit. The dielectric relaxation activation energy and mean energy difference between gauche and trans conformations of poly(propylene glycol) in the presence of mercuric chloride, both showed a distinct minimum when the concentration of mercuric chloride was close to 5 mole %. Opposite behaviour was observed for the Cole-Cole parameter. It was concluded that the majority of the dielectric data could be rationalised in terms of a 5-membered cyclic complex formed between mercuric chloride and PPG in which the complexed segment of the polyether-(OMeCH2CH2O)- adopted either gauche or cis conformations.