923 resultados para PLANE-STRAIN COMPRESSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Test results of 24 reinforced concrete wall panels in one-way in-plane action are presented. The panels were loaded at a small eccentricity to reflect possible eccentric loading in practice. Influences of slenderness ratio, aspect ratio, vertical steel, and horizontal steel on the ultimate load are studied. An empirical equation modifying two existing methods is proposed for the prediction of ultimate load. The modified equation includes the effects of slenderness ratio, amount of vertical steel, and aspect ratio. The results predicted by the proposed modified method and five other available equations are compared with 48 test data. The proposed modified equation is found to be satisfactory and, additionally, includes the effect of aspect ratio which is not present in other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under hot-forming conditions characterized by high homologous temperatures and strain-rates, metals usually exhibit rate-dependent inelastic behavior. An elastic-viscoplastic constitutive model is presented here to describe metal behavior during hot-forming. The model uses an isotropic internal variable to represent the resistance offered to plastic deformation by the microstructure. Evolution equations are developed for the inelastic strain and the deformation resistance based on experimental results. A methodology is presented for extracting model parameters from constant true strain-rate compression tests performed at different temperatures. Model parameters are determined for an Al-1Mn alloy and an Al-Mg-Si alloy, and the predictions of the model are shown to be in good agreement with the experimental data. (C) 2000 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain and temperature sensitivities of a type I Bragg grating inscribed in a germania doped silica fiber, fabricated under normal conditions and zero strain, are compared with that of a Bragg grating inscribed under pre-strained condition. The results obtained reveal that the strain and temperature sensitivities of the two gratings are different. Based on these results, we demonstrate a technique which enables discrimination of strain and temperature in a Fiber Bragg Grating (FBG) with a linear response. The present technique allows for an easy implementation of the sensor by providing a direct access to the grating region in the fiber and demands only a simple interrogation system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The systems formalism is used to obtain the interfacial concentration transients for power-law current input at an expanding plane electrode. The explicit results for the concentration transients obtained here pertain to arbitrary homogeneous reaction schemes coupled to the oxidant and reductant of a single charge-transfer step and the power-law form without and with a preceding blank period (for two types of power-law current profile, say, (i) I(t) = I0(t−t0)q for t greater-or-equal, slanted t0, I(t) = 0 for t < t0; and (ii) I(t) = I0tq for t greater-or-equal, slanted t0, I(t) = 0 for t < t0). Finally the potential transients are obtained using Padé approximants. The results of Galvez et al. (for E, CE, EC, aC) (J. Electroanal. Chem., 132 (1982) 15; 146 (1983) 221, 233, 243), Molina et al. (for E) (J. Electroanal. Chem., 227 (1987) 1 and Kies (for E) (J. Electroanal. Chem., 45 (1973) 71) are obtained as special cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The static response of thin, wrinkled membranes is studied using both a tension field approximation based on plane stress conditions and a 3D nonlinear elasticityformulation, discretized through 8-noded Cosserat point elements. While the tension field approach only obtains the wrinkled/slack regions and at best a measure of the extent of wrinkliness, the 3D elasticity solution provides, in principle, the deformed shape of a wrinkled/slack membrane. However, since membranes barely resist compression, the discretized and linearized system equations via both the approaches are ill-conditioned and solutions could thus be sensitive to discretizations errors as well as other sources of noises/imperfections. We propose a regularized, pseudo-dynamical recursion scheme that provides a sequence of updates, which are almost insensitive to theregularizing term as well as the time step size used for integrating the pseudo-dynamical form. This is borne out through several numerical examples wherein the relative performance of the proposed recursion scheme vis-a-vis a regularized Newton strategy is compared. The pseudo-time marching strategy, when implemented using 3D Cosserat point elements, also provides a computationally cheaper, numerically accurate and simpler alternative to that using geometrically exact shell theories for computing large deformations of membranes in the presence of wrinkles. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfectly hard particles are those which experience an infinite repulsive force when they overlap, and no force when they do not overlap. In the hard-particle model, the only static state is the isostatic state where the forces between particles are statically determinate. In the flowing state, the interactions between particles are instantaneous because the time of contact approaches zero in the limit of infinite particle stiffness. Here, we discuss the development of a hard particle model for a realistic granular flow down an inclined plane, and examine its utility for predicting the salient features both qualitatively and quantitatively. We first discuss Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.58 are in the rapid flow regime, due to the very high particle stiffness. An important length scale in the shear flow of inelastic particles is the `conduction length' delta = (d/(1 - e(2))(1/2)), where d is the particle diameter and e is the coefficient of restitution. When the macroscopic scale h (height of the flowing layer) is larger than the conduction length, the rates of shear production and inelastic dissipation are nearly equal in the bulk of the flow, while the rate of conduction of energy is O((delta/h)(2)) smaller than the rate of dissipation of energy. Energy conduction is important in boundary layers of thickness delta at the top and bottom. The flow in the boundary layer at the top and bottom is examined using asymptotic analysis. We derive an exact relationship showing that the a boundary layer solution exists only if the volume fraction in the bulk decreases as the angle of inclination is increased. In the opposite case, where the volume fraction increases as the angle of inclination is increased, there is no boundary layer solution. The boundary layer theory also provides us with a way of understanding the cessation of flow when at a given angle of inclination when the height of the layer is decreased below a value h(stop), which is a function of the angle of inclination. There is dissipation of energy due to particle collisions in the flow as well as due to particle collisions with the base, and the fraction of energy dissipation in the base increases as the thickness decreases. When the shear production in the flow cannot compensate for the additional energy drawn out of the flow due to the wall collisions, the temperature decreases to zero and the flow stops. Scaling relations can be derived for h(stop) as a function of angle of inclination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified linear prediction (MLP) method is proposed in which the reference sensor is optimally located on the extended line of the array. The criterion of optimality is the minimization of the prediction error power, where the prediction error is defined as the difference between the reference sensor and the weighted array outputs. It is shown that the L2-norm of the least-squares array weights attains a minimum value for the optimum spacing of the reference sensor, subject to some soft constraint on signal-to-noise ratio (SNR). How this minimum norm property can be used for finding the optimum spacing of the reference sensor is described. The performance of the MLP method is studied and compared with that of the linear prediction (LP) method using resolution, detection bias, and variance as the performance measures. The study reveals that the MLP method performs much better than the LP technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

THE flowfield due to transverse injection of a round sonic jet into a supersonic flowis a configuration of interest in the design of supersonic combustors or thrust vector control of supersonic jets. The flow is also of fundamental interest because it presents separation from a smooth surface, embedded subsonic regions, curved shear layers, strong shocks, an unusual development of the injected jet into a kidney-shaped streamwise vortex pair, and a wake behind the jet. Although the geometry is simple, the flow is complex and is a good candidate for assessing the behavior of turbulence models for high-speed flow, beginning with the corresponding two-dimensional flow shown in Fig. 1. At the slot, an underexpanded sonic jet expands rapidly into the supersonic crossflow. Expansion waves reflect at the jet boundary, coalesce, and give rise to a Mach surface (Mach disk for round jets).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A posteriori error estimation and adaptive refinement technique for fracture analysis of 2-D/3-D crack problems is the state-of-the-art. The objective of the present paper is to propose a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region and to use this along with the stress based error estimator available in the literature for the region away from the crack tip. The proposed a posteriori error estimator is called the K-S error estimator. Further, an adaptive mesh refinement (h-) strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the proposed a posteriori error estimator and the h-adaptive refinement strategy have been demonstrated by employing the 4-noded, 8-noded and 9-noded plane stress finite elements. The proposed error estimator together with the h-adaptive refinement strategy will facilitate automation of fracture analysis process to provide reliable solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The striking lack of observable variation of the volume fraction with height in the center of a granular flow down an inclined plane is analysed using constitutive relations obtained from kinetic theory. It is shown that the rate of conduction in the granular energy balance equation is O(delta(2)) smaller than the rate of production of energy due to mean shear and the rate of dissipation due to inelastic collisions, where the small parameter delta = (d/(1 - e(n))H-1/2), d is the particle diameter, en is the normal coefficient of restitution and H is the thickness of the flowing layer. This implies that the volume fraction is a constant in the leading approximation in an asymptotic analysis in small delta. Numerical estimates of both the parameter delta and its pre-factor are obtained to show that the lack of observable variation of the volume fraction with height can be explained by constitutive relations obtained from kinetic theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strained epitaxial La0.5Sr0.5CoO3 films are grown on LaAlO3 substrate. Structural, electrical,and magnetic measurements were carried out. Out of plane lattice parameter of the film undergoes compressive strain and the coercivity is enhanced. The zero field cooled (ZFC) magnetization curve for a field applied parallel to the film plane shows a jump, which suggests a spin reorientation transition (SRT), while ZFC magnetization for a field applied perpendicular to the film plane is featureless. This jump in magnetization is shifted to higher temperatures when the magnetic field is reduced. The SRT is attributed to the strain in the film. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For highly compressible normally consolidated saturated soil the compression index, Cc, is not constant over the entire pressure range. However, the ratio of the compression index and the initial specific volume, generally known as the compression ratio, appears to be constant. Thus settlement seems to depend on Cc/(1 + e) rather than Cc alone. Using the theoretical zero air voids line and the generalized compressibility equation for normally consolidated saturated soils, a generalized and simple equation for compression has been derived in the form: C'c = 0.003wL.