991 resultados para PARTIAL REDUCTION
Resumo:
Patients with heart failure who have undergone partial left ventriculotomy improve resting left ventricular systolic function, but have limited functional capacity. We studied systolic and diastolic left ventricular function at rest and during submaximal exercise in patients with previous partial left ventriculotomy and in patients with heart failure who had not been operated, matched for maximal and submaximal exercise capacity. Nine patients with heart failure previously submitted to partial left ventriculotomy were compared with 9 patients with heart failure who had not been operated. All patients performed a cardiopulmonary exercise test with measurement of peak oxygen uptake and anaerobic threshold. Radionuclide left ventriculography was performed to analyze ejection fraction and peak filling rate at rest and during exercise at the intensity corresponding to the anaerobic threshold. Groups presented similar exercise capacity evaluated by peak oxygen uptake and at anaerobic threshold. Maximal heart rate was lower in the partial ventriculotomy group compared to the heart failure group (119 ± 20 vs 149 ± 21 bpm; P < 0.05). Ejection fraction at rest was higher in the partial ventriculotomy group as compared to the heart failure group (41 ± 12 vs 32 ± 9%; P < 0.0125); however, ejection fraction increased from rest to anaerobic threshold only in the heart failure group (partial ventriculotomy = 44 ± 17%; P = non-significant vs rest; heart failure = 39 ± 11%; P < 0.0125 vs rest; P < 0.0125 vs change in the partial ventriculotomy group). Peak filling rate was similar at rest and increased similarly in both groups at the anaerobic threshold intensity (partial ventriculotomy = 2.28 ± 0.55 EDV/s; heart failure = 2.52 ± 1.07 EDV/s; P < 0.0125; P > 0.05 vs change in partial ventriculotomy group). The abnormal responses demonstrated here may contribute to the limited exercise capacity of patients with partial left ventriculotomy despite the improvement in resting left ventricular systolic function.
Resumo:
Electrical machine drives are the most electrical energy-consuming systems worldwide. The largest proportion of drives is found in industrial applications. There are, however many other applications that are also based on the use of electrical machines, because they have a relatively high efficiency, a low noise level, and do not produce local pollution. Electrical machines can be classified into several categories. One of the most commonly used electrical machine types (especially in the industry) is induction motors, also known as asynchronous machines. They have a mature production process and a robust rotor construction. However, in the world pursuing higher energy efficiency with reasonable investments not every application receives the advantage of using this type of motor drives. The main drawback of induction motors is the fact that they need slipcaused and thus loss-generating current in the rotor, and additional stator current for magnetic field production along with the torque-producing current. This can reduce the electric motor drive efficiency, especially in low-speed, low-power applications. Often, when high torque density is required together with low losses, it is desirable to apply permanent magnet technology, because in this case there is no need to use current to produce the basic excitation of the machine. This promotes the effectiveness of copper use in the stator, and further, there is no rotor current in these machines. Again, if permanent magnets with a high remanent flux density are used, the air gap flux density can be higher than in conventional induction motors. These advantages have raised the popularity of PMSMs in some challenging applications, such as hybrid electric vehicles (HEV), wind turbines, and home appliances. Usually, a correctly designed PMSM has a higher efficiency and consequently lower losses than its induction machine counterparts. Therefore, the use of these electrical machines reduces the energy consumption of the whole system to some extent, which can provide good motivation to apply permanent magnet technology to electrical machines. However, the cost of high performance rare earth permanent magnets in these machines may not be affordable in many industrial applications, because the tight competition between the manufacturers dictates the rules of low-cost and highly robust solutions, where asynchronous machines seem to be more feasible at the moment. Two main electromagnetic components of an electrical machine are the stator and the rotor. In the case of a conventional radial flux PMSM, the stator contains magnetic circuit lamination and stator winding, and the rotor consists of rotor steel (laminated or solid) and permanent magnets. The lamination itself does not significantly influence the total cost of the machine, even though it can considerably increase the construction complexity, as it requires a special assembly arrangement. However, thin metal sheet processing methods are very effective and economically feasible. Therefore, the cost of the machine is mainly affected by the stator winding and the permanent magnets. The work proposed in this doctoral dissertation comprises a description and analysis of two approaches of PMSM cost reduction: one on the rotor side and the other on the stator side. The first approach on the rotor side includes the use of low-cost and abundant ferrite magnets together with a tooth-coil winding topology and an outer rotor construction. The second approach on the stator side exploits the use of a modular stator structure instead of a monolithic one. PMSMs with the proposed structures were thoroughly analysed by finite element method based tools (FEM). It was found out that by implementing the described principles, some favourable characteristics of the machine (mainly concerning the machine size) will inevitable be compromised. However, the main target of the proposed approaches is not to compete with conventional rare earth PMSMs, but to reduce the price at which they can be implemented in industrial applications, keeping their dimensions at the same level or lower than those of a typical electrical machine used in the industry at the moment. The measurement results of the prototypes show that the main performance characteristics of these machines are at an acceptable level. It is shown that with certain specific actions it is possible to achieve a desirable efficiency level of the machine with the proposed cost reduction methods.
Resumo:
Massive hepatectomy associated with infection induces liver dysfunction, or even multiple organ failure and death. Glycyrrhizin has been shown to exhibit anti-oxidant and anti-inflammatory activities. The aim of the present study was to investigate whether glycyrrhizin could attenuate endotoxin-induced acute liver injury after partial hepatectomy. Male Wistar rats (6 to 8 weeks old, weighing 200-250 g) were randomly assigned to three groups of 24 rats each: sham, saline and glycyrrhizin. Rats were injected intravenously with lipopolysaccharide (LPS) 24 h after 70% hepatectomy. Glycyrrhizin, pre-administered three times with 24 h intervals 48 h before hepatectomy, prolonged the survival of rats submitted to partial hepatectomy and LPS injection, compared with saline controls. Glycyrrhizin was shown to attenuate histological hepatic changes and significantly reduced serum levels of aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase, at all the indicated times (6 rats from each were sacrificed 1, 3, 6, and 9 h after LPS injection), compared with saline controls. Glycyrrhizin also significantly inhibited hepatocyte apoptosis by down-regulating the expression of caspase-3 and inhibiting the release of cytochrome C from mitochondria into the cytoplasm. The anti-inflammatory activity of glycyrrhizin may rely on the inhibition of release of tumor necrosis factor-a, myeloperoxidase activity, and translocation of nuclear factor-kappa B into the nuclei. Glycyrrhizin also up-regulated the expression of proliferating cell nuclear antigen, implying that it might be able to promote regeneration of livers harmed by LPS. In summary, glycyrrhizin may represent a potent drug protecting the liver against endotoxin-induced injury, especially after massive hepatectomy.
Resumo:
Lipid transport in arthropods is achieved by highly specialized lipoproteins, which resemble those described in vertebrate blood. Here we describe purification and characterization of the lipid-apolipoprotein complex, lipophorin (Lp), from adults and larvae of the cowpea weevil Callosobruchus maculatus. We also describe the Lp-mediated lipid transfer to developing oocytes. Lps were isolated from homogenates of C. maculatus larvae and adults by potassio bromide gradient and characterized with respect to physicochemical properties and lipid content. The weevil Lp (465 kDa) and larval Lp (585 kDa), with hydrated densities of 1.22 and 1.14 g/mL, contained 34 and 56% lipids and 9 and 7% carbohydrates, respectively. In both Lps, mannose was the predominant monosaccharide detected by paper chromatography. SDS-PAGE revealed two apolipoproteins in each Lp with molecular masses of 225 kDa (apolipoprotein-I) and 79 kDa (apolipoprotein-II). The lipids were extracted and analyzed by thin-layer chromatography. The major phospholipids found were phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine in adult Lp, and phosphatidylcholine, phosphatidylethanolamine and sphingomyelin in larval Lp. Hydrocarbons, fatty acids and triacylglycerol were the major neutral lipids found in both Lps. Lps labeled in the protein moiety with radioactive iodine (125I-iodine) or in the lipid moiety with fluorescent lipids revealed direct evidence of endocytic uptake of Lps in live oocytes of C. maculatus.
Resumo:
Chaperone members of the protein disulfide isomerase family can catalyze the thiol-disulfide exchange reaction with pairs of cysteines. There are 14 protein disulfide isomerase family members, but the ability to catalyze a thiol disulfide exchange reaction has not been demonstrated for all of them. Human endoplasmic reticulum protein chaperone thio-oxidoreductase (ERp18) shows partial oxidative activity as a protein disulfide isomerase. The aim of the present study was to evaluate the participation of ERp18 in gonadotropin-releasing hormone receptor (GnRHR) expression at the plasma membrane. Cos-7 cells were cultured, plated, and transfected with 25 ng (unless indicated) wild-type human GnRHR (hGnRHR) or mutant GnRHR (Cys14Ala and Cys200Ala) and pcDNA3.1 without insert (empty vector) or ERp18 cDNA (75 ng/well), pre-loaded for 18 h with 1 µCi myo-[2-3H(N)]-inositol in 0.25 mL DMEM and treated for 2 h with buserelin. We observed a decrease in maximal inositol phosphate (IP) production in response to buserelin in the cells co-transfected with hGnRHR, and a decrease from 20 to 75 ng of ERp18 compared with cells co-transfected with hGnRHR and empty vector. The decrease in maximal IP was proportional to the amount of ERp18 DNA over the range examined. Mutants (Cys14Ala and Cys200Ala) that could not form the Cys14-Cys200 bridge essential for plasma membrane routing of the hGnRHR did not modify maximal IP production when they were co-transfected with ERp18. These results suggest that ERp18 has a reduction role on disulfide bonds in wild-type hGnRHR folding.
Resumo:
Elongation factor 1A is a highly conserved protein that participates in translation. We report the occurrence of two genes homologous to the eukaryotic Elongation Factor 1A in Bradysia hygida and describe the partial cloning and characterization of the B. hygida eukaryotic Elongation Factor 1A-F1 (BheEF1A-F1) gene. The pattern of BheEF1A-F1 expression in the salivary gland at the end of the fourth larval instar was investigated using real-time PCR. The results showed that BheEF1A-F1 expression levels are relatively constant at the time when rapid changes in protein synthesis occur in this tissue. In situ hybridization experiments coupled to Southern blot analyses showed that the BheEF1A-F1 gene is located at position 3d of the A chromosome and a second gene homologous to eEF1A is located at position 6a of the X chromosome. Southern blot analyses showed that both the BheEF1A-F1 gene and the second gene homologous to eEF1A constitute non-amplified genes. The present results contribute to the molecular characterization of a sciarid eEF1A gene.
Resumo:
To determine if Butea superba Roxb., a traditional Thai male potency herb, has androgenic activity in 60-day-old male Wistar rats, we measured its effects on the pituitary-testicular axis and sex organs. Intact and orchidectomized adult male rats were subdivided into five groups (10 rats/group): distilled water, Butea superba (BS)-10, BS-50, BS-250, and testosterone propionate (TP). They received 0, 10, 50, and 250 mg·kg body weight-1·day-1 BS in distilled water by gavage and 6 mg·kg body weight-1·day-1 TP sc, respectively, during the 30-day treatment period. Blood was collected every 15 days and luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone were measured. Changes of weight and histological appearance of sex organs were determined at the end of the 30-day treatment and 15-day post-treatment periods. TP treatment reduced serum FSH and LH levels and significantly increased the weight of the seminal vesicles and epididymis, in accordance with histopathological changes, in both intact and orchidectomized rats. No changes in serum testosterone, LH, and FSH levels were observed in any of the intact rats treated with BS, but a significant increase in seminal vesicle weight was observed only in the BS-250 group. Although a significant reduction in serum LH was detected in the BS-50 and BS-250 groups of orchidectomized rats, no significant change in weight or histology of sex organs was observed. Thus, we conclude that B. superba needs endogenous testosterone to work synergistically to stimulate the accessory sex organ of intact animals and can potentially exhibit an LH reduction effect in orchidectomized animals.
Resumo:
High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS) can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (PLS-DA) was used to classify 11.7 T ¹H MRS spectra of brain tissue extracts from patients with brain tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis) and a group of control brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways such as glycolysis and ketogenesis.
Resumo:
Intestinal barrier dysfunction plays an important role in spontaneous bacterial peritonitis. In the present study, changes in the intestinal barrier with regard to levels of secretory immunoglobulin A (SIgA) and its components were studied in fulminant hepatic failure (FHF). Immunohistochemistry and double immunofluorescent staining were used to detect intestinal IgA, the secretory component (SC) and SIgA in patients with FHF (20 patients) and in an animal model with FHF (120 mice). Real-time PCR was used to detect intestinal SC mRNA in the animal model with FHF. Intestinal SIgA, IgA, and SC staining in patients with FHF was significantly weaker than in the normal control group (30 patients). Intestinal IgA and SC staining was significantly weaker in the animal model with FHF than in the control groups (normal saline: 30 mice; lipopolysaccharide: 50 mice; D-galactosamine: 50 mice; FHF: 120 mice). SC mRNA of the animal model with FHF at 2, 6, and 9 h after injection was 0.4 ± 0.02, 0.3 ± 0.01, 0.09 ± 0.01, respectively. SC mRNA of the animal model with FHF was significantly decreased compared to the normal saline group (1.0 ± 0.02) and lipopolysaccharide group (0.89 ± 0.01). The decrease in intestinal SIgA and SC induced failure of the intestinal immunologic barrier and the attenuation of gut immunity in the presence of FHF.
Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats
Resumo:
This study was designed to evaluate the effect of drag reducer polymers (DRP) on arteries from normotensive (Wistar) and spontaneously hypertensive rats (SHR). Polyethylene glycol (PEG 4000 at 5000 ppm) was perfused in the tail arterial bed with (E+) and without endothelium (E-) from male, adult Wistar (N = 14) and SHR (N = 13) animals under basal conditions (constant flow at 2.5 mL/min). In these preparations, flow-pressure curves (1.5 to 10 mL/min) were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS) by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%), WSS (Wistar/E+: 36; SHR/E+: 40%) and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.
Resumo:
In this article, we compare two strategies for atherosclerosis treatment: drugs and healthy lifestyle. Statins are the principal drugs used for the treatment of atherosclerosis. Several secondary prevention studies have demonstrated that statins can significantly reduce cardiovascular events including coronary death, the need for surgical revascularization, stroke, total mortality, as well as fatal and non-fatal myocardial infarction. These results were observed in both men and women, the elderly, smokers and non-smokers, diabetics and hypertensives. Primary prevention studies yielded similar results, although total mortality was not affected. Statins also induce atheroma regression and do not cause cancer. However, many unresolved issues remain, such as partial risk reduction, costs, several potential side effects, and long-term use by young patients. Statins act mainly as lipid-lowering drugs but pleiotropic actions are also present. Healthy lifestyle, on the other hand, is effective and inexpensive and has no harmful effects. Five items are associated with lower cardiac risk: non-smoking, BMI ≤25, regular exercise (30 min/day), healthy diet (fruits, vegetables, low-saturated fat, and 5-30 g alcohol/day). Nevertheless, there are difficulties in implementing these measures both at the individual and population levels. Changes in behavior require multidisciplinary care, including medical, nutritional, and psychological counseling. Participation of the entire society is required for such implementation, i.e., universities, schools, media, government, and medical societies. Although these efforts represent a major challenge, such a task must be faced in order to halt the atherosclerosis epidemic that threatens the world.
Resumo:
We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3’3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, which occurred in parallel with increased glutathione oxidation, hydroperoxide formation (xylenol orange assay) and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with diphenyl diselenide (100 µM) completely prevented the disruption of mitochondrial activity as well as the increase in TBARS levels caused by methylmercury. The compound 3’3-ditrifluoromethyldiphenyl diselenide provided a partial but significant protection against methylmercury-induced mitochondrial dysfunction (45.4 ± 5.8% inhibition of the methylmercury effect). Diphenyl diselenide showed a higher thiol peroxidase activity compared to the other three compounds. Catalase blocked methylmercury-induced TBARS, pointing to hydrogen peroxide as a vector during methylmercury toxicity in this model. This result also suggests that thiol peroxidase activity of organoselenium compounds accounts for their protective actions against methylmercury-induced oxidative stress. Our results show that diphenyl diselenide and potentially other organoselenium compounds may represent important molecules in the search for an improved therapy against the deleterious effects of methylmercury as well as other mercury compounds.
Resumo:
A recent study showed that miR-26a is downregulated in hepatocellular carcinoma tissues and that this downregulation is an independent predictor of survival. Interestingly, the same study also reported that miR-26a downregulation causes a concomitant elevation of IL-6 expression. Because miR-26a expression was found to be transcriptionally downregulated by oncogene c-Myc in various cancers, and the expression of c-Myc was increased by IL-6 stimulation, we hypothesized that IL-6 contributes to reduction of miR-26a in hepatocellular carcinoma. Serum IL-6 was measured by ELISA and miR-26a was detected by qRT-PCR. The data of 30 patients with hepatocellular carcinoma who had undergone surgical tumor resection revealed that serum IL-6 could be considered to be a predictor of survival up to 5 years for hepatocellular carcinoma patients (log-rank test, P < 0.05). We observed that the serum IL-6 concentration was inversely correlated with miR-26a expression in cancerous tissues (Pearson correlation test, r = -0.651, P < 0.01). Furthermore, by in vitro experiments with HepG2 cells, we showed that IL-6 stimulation can lead to miR-26a suppression via c-Myc activation, whereas in normal hepatocyte LO2 cells incubation with IL-6 had no significant effect on miR-26a expression. Taken together, these results indicate that miR-26a reduction in hepatocellular carcinoma might be due to IL-6 upregulation.
Resumo:
We investigated the effect of fish oil (FO) supplementation on tumor growth, cyclooxygenase 2 (COX-2), peroxisome proliferator-activated receptor gamma (PPARγ), and RelA gene and protein expression in Walker 256 tumor-bearing rats. Male Wistar rats (70 days old) were fed with regular chow (group W) or chow supplemented with 1 g/kg body weight FO daily (group WFO) until they reached 100 days of age. Both groups were then inoculated with a suspension of Walker 256 ascitic tumor cells (3×107 cells/mL). After 14 days the rats were killed, total RNA was isolated from the tumor tissue, and relative mRNA expression was measured using the 2-ΔΔCT method. FO significantly decreased tumor growth (W=13.18±1.58 vsWFO=5.40±0.88 g, P<0.05). FO supplementation also resulted in a significant decrease in COX-2 (W=100.1±1.62 vsWFO=59.39±5.53, P<0.001) and PPARγ (W=100.4±1.04vs WFO=88.22±1.46, P<0.05) protein expression. Relative mRNA expression was W=1.06±0.022 vsWFO=0.31±0.04 (P<0.001) for COX-2, W=1.08±0.02vs WFO=0.52±0.08 (P<0.001) for PPARγ, and W=1.04±0.02 vs WFO=0.82±0.04 (P<0.05) for RelA. FO reduced tumor growth by attenuating inflammatory gene expression associated with carcinogenesis.
Resumo:
The objective of this prospective study was to determine the plasma levels of nitric oxide (NO) in women with chronic pelvic pain secondary to endometriosis (n=24) and abdominal myofascial pain syndrome (n=16). NO levels were measured in plasma collected before and 1 month after treatment. Pretreatment NO levels (μM) were lower in healthy volunteers (47.0±12.7) than in women with myofascial pain (64.2±5.0, P=0.01) or endometriosis (99.5±12.9, P<0.0001). After treatment, plasma NO levels were reduced only in the endometriosis group (99.5±12.9 vs 61.6±5.9, P=0.002). A correlation between reduction of pain intensity and reduction of NO level was observed in the endometriosis group [correlation = 0.67 (95%CI = 0.35 to 0.85), P<0.0001]. Reduction of NO levels was associated with an increase of pain threshold in this group [correlation = -0.53 (-0.78 to -0.14), P<0.0001]. NO levels appeared elevated in women with chronic pelvic pain diagnosed as secondary to endometriosis, and were directly associated with reduction in pain intensity and increase in pain threshold after treatment. Further studies are needed to investigate the role of NO in the pathophysiology of pain in women with endometriosis and its eventual association with central sensitization.