964 resultados para Oxygen-uptake


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present investigation was to evaluate the influence of the physical fitness of a cardiopulmonary resuscitation (CPR) provider on the performance of and physiologic response to CPR. To this end, comparisons were made of sedentary and physically active subjects in terms of CPR performance and physiologic variables. Two study groups were established: group P (n = 14), composed of sedentary, professional CPR rescuers (mean [± SD]; age, 34 ± 6 years; V̇O2max, 32.5 ± 5.5 mL/kg/min), and group Ex (n = 14), composed of physically active, nonexperienced subjects (age, 34 ± 6 years; V̇O2max, 44.5 ± 8.5 mL/kg/min). Each subject was required to perform an 18-min CPR session, which involved manual external cardiac compressions (ECCs) on an electronic teaching mannequin following accepted standard CPR guidelines. Subjects' gas exchange parameters and heart rates (HRs) were monitored throughout the trial. Variables indicating the adequacy of the ECCs (ECC depth and the percentage of incorrect compressions and hand placements) also were determined. Overall CPR performance was similar in both groups. The indicators of ECC adequacy fell within accepted limits (ie, an ECC depth between 38 and 51 mm). However, fatigue prevented four subjects from group P from completing the trial. In contrast, the physiologic responses to CPR differed between groups. The indicators of the intensity of effort during the trial, such as HR or percentage of maximum oxygen uptake (V̇O2max) were higher in group P subjects than group Ex subjects, respectively (HRs at the end of the trial, 139 ± 22 vs 115 ± 17 beats/min, p < 0.01; percentage of V̇O2max after 12 min of CPR, 46.7 ± 9.7% vs 37.2 ± 10.4%, p < 0,05). These results suggest that a certain level of physical fitness may be beneficial to CPR providers to ensure the adequacy of chest compressions performed during relatively long periods of cardiac arrest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to establish the optimal allometric models to predict International Ski Federation’s ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake (V̇O2max) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine V̇O2max (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects’ FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers’ FISsprint based on V̇O2max, LM, and body mass. The subjects’ test and performance data were as follows: V̇O2max, 4.0±0.3 L min-1; LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: 3.91×105 ∙ VO -6.002maxand 6.95×1010 ∙ LM-5.25; these models explained 66% (P=0.0043) and 52% (P=0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on V̇O2max and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose V̇O2max differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher V̇O2max or LM. It is recommended that coaches use the absolute expression of these variables to monitor skiers’ performance-related training adaptations linked to changes in aerobic power and anaerobic capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our aim was to determine the normative reference values of cardiorespiratory fitness (CRF) and to establish the proportion of subjects with low CRF suggestive of future cardio-metabolic risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introducción y objetivo: La escala de auto-reporte de la condición física (IFIS) “The International FItness Scale”, fue creada como parte del proyecto financiado por la unión europea HELENA Study “Healthy Lifestyle in Europe by Nutrition in Adolescence”. A la fecha, no se conoce ningún estudio que haya examinado el auto-reporte de la condición física en un contexto distinto al Europeo. Este trabajo evalúa por auto-reporte la condición física relacionada con la salud (CFRS) en una muestra de niños y adolescentes del distrito de Bogotá pertenecientes al grupo FUPRECOL. Materiales y Método: Estudio transversal en 1.922 escolares (54.3% mujeres). Se aplicó de manera auto-administrada la escala “IFIS”. Se midió el peso, talla, circunferencia de cintura y se calculó el índice de masa corporal (IMC) en kg/m2. La capacidad aeróbica, el índice general de fuerza (z-score fuerza prensil + z-score salto de longitud), la velocidad/agilidad y la flexibilidad fueron como indicadores objetivos de la CFRS objetiva y directa. Resultados: La muestra estuvo conformada por 1.922 escolares, de los cuales 1.045 fueron mujeres (54.3%) y 877 hombres (45.6%). El análisis ANOVA mostró que los varones tenían mayores valores de peso (p<0.003), estatura (p<0.001), CC (p<0.001), capacidad aeróbica (p<0.001), velocidad/agilidad (p<0.001) e índice general de fuerza (p<0.001), mientras que las mujeres presentaron exceso de peso por IMC (sobrepeso y obesidad). En el componente de condición física general, las puntuaciones más altas en la escala “IFIS” se encontraron en la categoría buena (40%), seguido de aceptable (34%), mientras que la puntuación más baja se encontró en la categoría muy mala/mala (6%). En población general, relaciones lineales fueron observadas entre el auto-reporte de la CFRS por la escala “IFIS” y la mayoría de los indicadores del fitness evaluado objetivamente. El análisis post-hoc ajustado por sexo, edad y etapa de maduración reveló que los escolares que acusaron mejores valores en la auto-percepción de los dominios del “IFIS”, presentaron mejor desempeño en los indicadores de CFRS objetivos. Conclusión: Este trabajo describe por primera vez en población Latina, que el auto-reporte con la escala “IFIS”, es un instrumento válido para evaluar la CFRS, y además posee una adecuada capacidad para clasificar la aptitud física en población escolar de Bogotá, Colombia. Esta escala se encuentra disponible para otros investigadores interesados en evaluar la condición física muscular en América Latina.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Elevated levels of copper have been detected in various types of human cancer cells, such as breast cancer cells, and a number of mechanisms have been proposed to explain the action and influence of copper on tumor progress. In this work, we found that stimulating the proliferation of mammary epithelial MCF7 cells with the high-redox-potential copper complex Cu (GlyGlyHis) is associated with the copper-induced intracellular generation of reactive oxygen species (ROS) that induces lipid peroxidation and causes increased roughness of external cell membranes, which leads to the formation of larger cell domes. The results presented herein provide new insights into the molecular link between copper and the proliferation of breast cancer cells and, consequently, into the mechanism by which changes in redox balance and ROS accumulation regulates cell membrane roughness. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present new nitrogen isotope data from the water column and surface sediments for paleo-proxy validation collected along the Peruvian and Ecuadorian margins between 1°N and 18°S. Productivity proxies in the bulk sediment (organic carbon, total nitrogen, biogenic opal, C37 alkenone concentrations) and 15N/14N ratios were measured at more than 80 locations within and outside the present-day Peruvian oxygen minimum zone (OMZ). Microbial N-loss to N2 in subsurface waters under O2 deficient conditions leaves a characteristic 15N-enriched signal in underlying sediments. We find that phytoplankton nutrient uptake in surface waters within the high nutrient, low chlorophyll (HNLC) regions of the Peruvian upwelling system influences the sedimentary signal as well. How the d15Nsed signal is linked to these processes is studied by comparing core-top values to the 15N/14N of nitrate and nitrite (d15N[NOx]) in the upper 200 m of the water column. Between 1°N and 10°S, subsurface O2 is still high enough to suppress N-loss keeping d15NNOx values relatively low in the subsurface waters. However d15N[NOx] values increase toward the surface due to partial nitrate utilization in the photic zone in this HNLC portion of the system. d15N[sed] is consistently lower than the isotopic signature of upwelled [NO3]-, likely due to the corresponding production of 15N depleted organic matter. Between 10°S and 15°S, the current position of perennial upwelling cells, HNLC conditions are relaxed and biological production and near-surface phytoplankton uptake of upwelled [NO3]- are most intense. In addition, subsurface O2 concentration decreases to levels sufficient for N-loss by denitrification and/or anammox, resulting in elevated subsurface d15N[NOx] values in the source waters for coastal upwelling. Increasingly higher production southward is reflected by various productivity proxies in the sediments, while the north-south gradient towards stronger surface [NO3]- utilization and subsurface N-loss is reflected in the surface sediment 15N/14N ratios. South of 10°S, d15N[sed] is lower than maximum water column d15N[NOx] values most likely because only a portion of the upwelled water originates from the depths where highest d15N[NOx] values prevail. Though the enrichment of d15N[NOx] in the subsurface waters is unambiguously reflected in d15N[sed] values, the magnitude of d15N[sed] enrichment depends on both the depth of upwelled waters and high subsurface d15N[NOx] values produce by N-loss. Overall, the degree of N-loss influencing subsurface d15N[NOx] values, the depth origin of upwelled waters, and the degree of near-surface nitrate utilization under HNLC conditions should be considered for the interpretation of paleo d15N[sed] records from the Peruvian oxygen minimum zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct comparisons between photosynthetic O-2 evolution rate and electron transport rate (ETR) were made in situ over 24 h using the benthic macroalga Ulva lactuca (Chlorophyta), growing and measured at a depth of 1.8 m, where the midday irradiance rose to 400-600 mumol photons m(-2) s(-1). O-2 exchange was measured with a 5-chamber data-logging apparatus and ETR with a submersible pulse amplitude modulated (PAM) fluorometer (Diving-PAM). Steady-state quantum yield ((Fm'-Ft)/Fm') decreased from 0.7 during the morning to 0.45 at midday, followed by some recovery in the late afternoon. At low to medium irradiances (0-300 mumol photons m(-2) s(-1)), there was a significant correlation between O-2 evolution and ETR, but at higher irradiances, ETR continued to increase steadily, while O-2 evolution tended towards an asymptote. However at high irradiance levels (600-1200 mumol photons m-(2) s(-1)) ETR was significantly lowered. Two methods of measuring ETR, based on either diel ambient light levels and fluorescence yields or rapid light curves, gave similar results at low to moderate irradiance levels. Nutrient enrichment (increases in [NO3-], [NH4+] and [HPO42-] of 5- to 15-fold over ambient concentrations) resulted in an increase, within hours, in photosynthetic rates measured by both ETR and O-2 evolution techniques. At low irradiances, approximately 6.5 to 8.2 electrons passed through PS II during the evolution of one molecule of O-2, i.e., up to twice the theoretical minimum number of four. However, in nutrient-enriched treatments this ratio dropped to 5.1. The results indicate that PAM fluorescence can be used as a good indication of the photosynthetic rate only at low to medium irradiances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim was to determine whether uptake of 5-hydroxytryptamine (5-HT) by the 5-HT transporter (SERT) modulates contractile responses to 5-HT in rat pulmonary arteries and whether this modulation is altered by exposure of rats to chronic hypoxia (10% oxygen; 8 h/day; 5 days). The effects of the SERT inhibitor, citalopram (100 nM), on contractions to 5-HT were determined in isolated ring preparations of pulmonary artery (intralobar and main) and compared with data obtained in systemic arteries. In intralobar pulmonary arteries citalopram produced a potentiation (viz. an increase in potency, pEC(50)) of 5-HT. The potentiation was endothelium-dependent in preparations from normoxic rats but endothelium-independent in preparations from hypoxic rats. In main pulmonary artery endothelium-independent potentiation was seen in preparations from hypoxic rats but no potentiation occurred in preparations from normoxic rats. In systemic arteries, citalopram caused endothelium-independent potentiation in aorta but no potentiation in mesenteric arteries; there were no differences between hypoxic and normoxic rats. It is concluded that SERT can influence the concentration of 5-HT in the vicinity of the vasoconstrictor receptors in pulmonary arteries. The data suggest that in pulmonary arteries from hypoxic rats, unlike normoxic rats, the SERT responsible for this effect is not in the endothelium and, hence, is probably in the smooth muscle. The data are compatible with reports that, in the pulmonary circulation, hypoxia induces/up-regulates SERT, and hence increases 5-HT uptake, in vascular smooth muscle. The findings may have implications in relation to the suggested use of SERT inhibitors in the treatment of pulmonary hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patient's quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE(-/-) mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre-ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis-linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro-inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High-energy phosphate metabolism remained unchanged (31-Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inconsistencies about dynamic asymmetry between the on- and off-transient responses in .VO2 are found in the literature. Therefore the purpose of this study was to examine .VO2on- and off-transients during moderate- and heavy-intensity cycling exercise in trained subjects. Ten men underwent an initial incremental test for the estimation of ventilatory threshold (VT) and, on different days, two bouts of square-wave exercise at moderate (<VT) and heavy (>VT) intensities. .VO2 kinetics in exercise and recovery were better described by a single exponential model (<VT) or by a double exponential with two time delays (>VT). For moderate exercise, we found a symmetry of .VO2 kinetics between the on- and off-transients (i.e., fundamental component), consistent with a system manifesting linear control dynamics. For heavy exercise, a slow component superimposed on the fundamental phase was expressed in both the exercise and recovery, with similar parameter estimates. But the on-transient values of the time constant were appreciably faster than the associated off-transient, and independent of the work rate imposed (<VT and >VT). Our results do not support a dynamically linear system model of .VO2 during cycling exercise in the heavy-intensity domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution of respiratory muscle work to the development of the O(2) consumption (Vo(2)) slow component is a point of controversy because it has been shown that the increased ventilation in hypoxia is not associated with a concomitant increase in Vo(2) slow component. The first purpose of this study was thus to test the hypothesis of a direct relationship between respiratory muscle work and Vo(2) slow component by manipulating inspiratory resistance. Because the conditions for a Vo(2) slow component specific to respiratory muscle can be reached during intense exercise, the second purpose was to determine whether respiratory muscles behave like limb muscles during heavy exercise. Ten trained subjects performed two 8-min constant-load heavy cycling exercises with and without a threshold valve in random order. Vo(2) was measured breath by breath by using a fast gas exchange analyzer, and the Vo(2) response was modeled after removal of the cardiodynamic phase by using two monoexponential functions. As anticipated, when total work was slightly increased with loaded inspiratory resistance, slight increases in base Vo(2), the primary phase amplitude, and peak Vo(2) were noted (14.2%, P < 0.01; 3.5%, P > 0.05; and 8.3%, P < 0.01, respectively). The bootstrap method revealed small coefficients of variation for the model parameter, including the slow-component amplitude and delay (15 and 19%, respectively), indicating an accurate determination for this critical parameter. The amplitude of the Vo(2) slow component displayed a 27% increase from 8.1 +/- 3.6 to 10.3 +/- 3.4 ml. min(-1). kg(-1) (P < 0.01) with the addition of inspiratory resistance. Taken together, this increase and the lack of any differences in minute volume and ventilatory parameters between the two experimental conditions suggest the occurrence of a Vo(2) slow component specific to the respiratory muscles in loaded condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE The choice of containers for storage of aqueous samples between their collection, transport and water hydrogen (2H) and oxygen (18O) stable isotope analysis is a topic of concern for a wide range of fields in environmental, geological, biomedical, food, and forensic sciences. The transport and separation of water molecules during water vapor or liquid uptake by sorption or solution and the diffusive transport of water molecules through organic polymer material by permeation or pervaporation may entail an isotopic fractionation. An experiment was conducted to evaluate the extent of such fractionation. METHODS Sixteen bottle-like containers of eleven different organic polymers, including low and high density polyethylene (LDPE and HDPE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), and perfluoroalkoxy-Teflon (PFA), of different wall thickness and size were completely filled with the same mineral water and stored for 659?days under the same conditions of temperature and humidity. Particular care was exercised to keep the bottles tightly closed and prevent loss of water vapor through the seals. RESULTS Changes of up to +5 parts per thousand for d2H values and +2.0 parts per thousand for d18O values were measured for water after more than 1?year of storage within a plastic container, with the magnitude of change depending mainly on the type of organic polymer, wall thickness, and container size. The most important variations were measured for the PET and PC bottles. Waters stored in glass bottles with Polyseal (TM) cone-lined PP screw caps and thick-walled HDPE or PFA containers with linerless screw caps having an integrally molded inner sealing ring preserved their original d2H and d18O values. The carbon, hydrogen, and oxygen stable isotope compositions of the organic polymeric materials were also determined. CONCLUSIONS The results of this study clearly show that for precise and accurate measurements of the water stable isotope composition in aqueous solutions, rigorous sampling and storage procedures are needed both for laboratory standards and for unknown samples. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blood doping involves the use of products that enhance the uptake, transport, or delivery of oxygen to the blood. One approach uses artificial oxygen carriers, known as hemoglobin-based oxygen carriers (HBOCs). This study describes an analytical strategy based on CE for detecting intact HBOCs in plasma samples collected for doping control. On-capillary detection was performed by UV/Vis at 415 nm, which offered detection selectivity for hemoproteins (such as hemoglobin and HBOCs). On-line ESI-MS detection with a TOF analyzer was further used to provide accurate masses on CE peaks and to confirm the presence of HBOCs. An immunodepletion sample preparation step was mandatory prior to analysis, in order to remove most abundant proteins that interfered with CE separation and altered the ESI process. This analytical method was successfully applied to plasma samples enriched with Oxyglobin, a commercially available HBOC used for veterinary purposes. Detection limits of 0.20 and 0.45 g/dL were achieved in plasma for CE-UV/Vis at 415 nm and CE-ESI-TOF/MS, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Ultrasmall superparamagnetic iron oxide nanoparticles (USPIO-NPs) are under development for imaging and drug delivery; however, their interaction with human blood-brain barrier models is not known. Materials & Methods: The uptake, reactive oxygen species production and transport of USPIO-NPs across human brain-derived endothelial cells as models of the blood-brain tumor barrier were evaluated for either uncoated, oleic acid-coated or polyvinylamine-coated USPIO-NPs. Results: Reactive oxygen species production was observed for oleic acid-coated and polyvinylamine-coated USPIO-NPs. The uptake and intracellular localization of the iron oxide core of the USPIO-NPs was confirmed by transmission electron microscopy. However, while the uptake of these USPIO-NPs by cells was observed, they were neither released by nor transported across these cells even in the presence of an external dynamic magnetic field. Conclusion: USPIO-NP-loaded filopodia were observed to invade the polyester membrane, suggesting that they can be transported by migrating angiogenic brain-derived endothelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review addresses the mechanisms of methylmercury (MeHg)-induced neurotoxicity, specifically examining the role of oxidative stress in mediating neuronal damage. A number of critical findings point to a central role for astrocytes in mediating MeHg-induced neurotoxicity as evidenced by the following observations: a) MeHg preferentially accumulates in astrocytes; b) MeHg specifically inhibits glutamate uptake in astrocytes; c) neuronal dysfunction is secondary to disturbances in astrocytes. The generation of reactive oxygen species (ROS) by MeHg has been observed in various experimental paradigms. For example, MeHg enhances ROS formation both in vivo (rodent cerebellum) and in vitro (isolated rat brain synaptosomes), as well as in neuronal and mixed reaggregating cell cultures. Antioxidants, including selenocompounds, can rescue astrocytes from MeHg-induced cytotoxicity by reducing ROS formation. We emphasize that oxidative stress plays a significant role in mediating MeHg-induced neurotoxic damage with active involvement of the mitochondria in this process. Furthermore, we provide a mechanistic overview on oxidative stress induced by MeHg that is triggered by a series of molecular events such as activation of various kinases, stress proteins and other immediate early genes culminating in cell damage.