897 resultados para Optical pattern recognition -- Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hannenhalli and Pevzner developed the first polynomial-time algorithm for the combinatorial problem of sorting of signed genomic data. Their algorithm solves the minimum number of reversals required for rearranging a genome to another when gene duplication is nonexisting. In this paper, we show how to extend the Hannenhalli-Pevzner approach to genomes with multigene families. We propose a new heuristic algorithm to compute the reversal distance between two genomes with multigene families via the concept of binary integer programming without removing gene duplicates. The experimental results on simulated and real biological data demonstrate that the proposed algorithm is able to find the reversal distance accurately. ©2005 IEEE

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PTS1 proteins are peroxisomal matrix proteins that have a well conserved targeting motif at the C-terminal end. However, this motif is present in many non peroxisomal proteins as well, thus predicting peroxisomal proteins involves differentiating fake PTS1 signals from actual ones. In this paper we report on the development of an SVM classifier with a separately trained logistic output function. The model uses an input window containing 12 consecutive residues at the C-terminus and the amino acid composition of the full sequence. The final model gives a Matthews Correlation Coefficient of 0.77, representing an increase of 54% compared with the well-known PeroxiP predictor. We test the model by applying it to several proteomes of eukaryotes for which there is no evidence of a peroxisome, producing a false positive rate of 0.088%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a new scheme for off-line recognition of multi-font numerals using the Takagi-Sugeno (TS) model. In this scheme, the binary image of a character is partitioned into a fixed number of sub-images called boxes. The features consist of normalized vector distances (gamma) from each box. Each feature extracted from different fonts gives rise to a fuzzy set. However, when we have a small number of fonts as in the case of multi-font numerals, the choice of a proper fuzzification function is crucial. Hence, we have devised a new fuzzification function involving parameters, which take account of the variations in the fuzzy sets. The new fuzzification function is employed in the TS model for the recognition of multi-font numerals.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: