997 resultados para Optical magnetic twisting cytometry
Resumo:
Toxicity of chemical pollutants in aquatic environments is often addressed by assays that inquire reproductive inhibition of test microorganisms, such as algae or bacteria. Those tests, however, assess growth of populations as a whole via macroscopic methods such as culture turbidity or colony-forming units. Here we use flow cytometry to interrogate the fate of individual cells in low-density populations of the bacterium Pseudomonas fluorescens SV3 exposed or not under oligotrophic conditions to a number of common pollutants, some of which derive from oil contamination. Cells were stained at regular time intervals during the exposure assay with fluorescent dyes that detect membrane injury (i.e., live-dead assay). Reduction of population growth rates was observed upon toxicant insult and depended on the type of toxicant. Modeling and cell staining indicate that population growth rate decrease is a combined effect of an increased number of injured cells that may or may not multiply, and live cells dividing at normal growth rates. The oligotrophic assay concept presented here could be a useful complement for existing biomarker assays in compliance with new regulations on chemical effect studies or, more specifically, for judging recovery after exposure to fluctuating toxicant conditions.
Resumo:
Abdominal ultrasound (US) has been widely used in the evaluation of patients with schistosomiasis mansoni. It represents an important indirect method of diagnosis and classification of the disease, and it has also been used as a tool in the evaluation of therapeutic response and regression of fibrosis. We describe the case of a man in whom US showed solid evidence of schistosomal periportal fibrosis and magnetic resonance imaging revealed that periportal signal alteration corresponded to adipose tissue which entered the liver togheter with the portal vein.
Resumo:
The objective of this paper is to propose a protocol to analyze blood samples in yellow fever 17DD vaccinated which developed serious adverse events. We investigated whether or not the time between sample collection and sample processing could interfere in lymphocyte subset percentage, for it is often impossible to analyze blood samples immediately after collection due to transport delay from collection places to the flow cytometry facility. CD4+CD38+ T, CD8+CD38+ T, CD3+ T, CD19+ B lymphocyte subsets were analyzed by flow cytometry in nine healthy volunteers immediately after blood collection and after intervals of 24 and 48 h. The whole blood lysis method and gradient sedimentation by Histopaque were applied to isolate peripheral blood mononuclear cells for flow cytometry analyses. With the lysis method, there was no significant change in lymphocyte subset percentage between the two time intervals (24 and 48 h). In contrast, when blood samples were processed by Histopaque gradient sedimentation, time intervals for sample processing influenced the percentage in T lymphocyte subsets but not in B cells. From the results obtained, we could conclude that the whole blood lysis method is more appropriate than gradient sedimentation by Histopaque for immunophenotyping of blood samples collected after serious adverse events, due to less variation in the lymphocyte subset levels with respect to the time factor.
Resumo:
A group of European experts was commissioned to establish guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) from evidence published up until March 2014, regarding pain, movement disorders, stroke, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC). A Level B recommendation (probable efficacy) is proposed for the antidepressant effect of low-frequency (LF) rTMS of the right DLPFC, HF-rTMS of the left DLPFC for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how to optimize rTMS protocols and techniques to give them relevance in routine clinical practice. In addition, professionals carrying out rTMS protocols should undergo rigorous training to ensure the quality of the technical realization, guarantee the proper care of patients, and maximize the chances of success. Under these conditions, the therapeutic use of rTMS should be able to develop in the coming years.
Resumo:
BACKGROUND: Many patients with an implantable cardioverter-defibrillator (ICD) have indications for magnetic resonance imaging (MRI). However, MRI is generally contraindicated in ICD patients because of potential risks from hazardous interactions between the MRI and ICD system. OBJECTIVE: The purpose of this study was to use preclinical computer modeling, animal studies, and bench and scanner testing to demonstrate the safety of an ICD system developed for 1.5-T whole-body MRI. METHODS: MRI hazards were assessed and mitigated using multiple approaches: design decisions to increase safety and reliability, modeling and simulation to quantify clinical MRI exposure levels, animal studies to quantify the physiologic effects of MRI exposure, and bench testing to evaluate safety margin. RESULTS: Modeling estimated the incidence of a chronic change in pacing capture threshold >0.5V and 1.0V to be less than 1 in 160,000 and less than 1 in 1,000,000 cases, respectively. Modeling also estimated the incidence of unintended cardiac stimulation to occur in less than 1 in 1,000,000 cases. Animal studies demonstrated no delay in ventricular fibrillation detection and no reduction in ventricular fibrillation amplitude at clinical MRI exposure levels, even with multiple exposures. Bench and scanner testing demonstrated performance and safety against all other MRI-induced hazards. CONCLUSION: A preclinical strategy that includes comprehensive computer modeling, animal studies, and bench and scanner testing predicts that an ICD system developed for the magnetic resonance environment is safe and poses very low risks when exposed to 1.5-T normal operating mode whole-body MRI.
Resumo:
PURPOSE: The goal of this study was to compare magnetic resonance enterography (MRE) and video capsule endoscopy (VCE) in suspected small bowel disease. MATERIALS AND METHODS: Nineteen patients with suspected small bowel disease participated in a prospective clinical comparison of MRE versus VCE. Both methods were evaluated separately and in conjunction with respect to a combined diagnostic endpoint based on clinical, laboratory, surgical, and histopathological findings. The Fisher's exact and j tests were used in comparing MRE and VCE. RESULTS: Small bowel pathologies were found in 15 out of 19 patients: Crohn's disease (n= 5), lymphoma (n= 4), lymphangioma (n= 1), adenocarcinoma (n= 1), postradiation enteropathy (n= 1), NSAID-induced enteropathy (n =1), angiodysplasia (n= 1), and small bowel adhesions (n= 1). VCE and MRE separately and in conjunction showed sensitivities of 92.9, 71.4, and 100% and specificities of 80, 60, and 80% (kappa= 0.73 vs. kappa = 0.29; P= 0.31/kappa = 0.85), respectively. In four patients, VCE depicted mucosal pathologies missed by MRE. MRE revealed 19 extraenteric findings in 11 patients as well as small bowel adhesions not detected on VCE (n= 1). CONCLUSION: VCE can readily depict and characterize subtle mucosal lesions missed at MRE, whereas MRE yields additional mural, perienteric, and extraenteric information. Thus, VCE and MRE appear to be complementary methods which, when used in conjunction, may better characterize suspected small bowel disease.
Resumo:
The aim of this study was to analyze the external morphology of the scutellum through optical microscopy and scanning electron microscopy (SEM) in male specimens of Triatoma costalimai, T. delpontei, T. eratyrusiformis, T. matogrossensis, T. infestans melanosoma, T. sherlocki, T. tibiamaculata, and T. vandae. A total of 30 photographs of the scutellum were made. Magnification varied from 50X to 750X. Regarding depth and forms of the central depression, the heart-shaped form was predominant, with some exceptions, so that this shape appears to be a common characteristic for species of genus Triatoma Laporte, 1832. In T. eratyrusiformis, a kind of sensillum with important taxonomic value was observed. The different sizes and shapes of the designs found on the posterior process of the scutellum were also of important taxonomic interest. The study of the scutellum based on SEM showed valuable characteristics, allowing the use of this structure to aid the diagnosis of triatomine species. Thus, more specimens in subsequent studies and analyses of morphometric parameters should contribute to agreement on phylogenetic aspects in this genus. A Key to eight species of Triatoma based on male scutellar morphology is presented.
Resumo:
Human electrophysiological studies support a model whereby sensitivity to so-called illusory contour stimuli is first seen within the lateral occipital complex. A challenge to this model posits that the lateral occipital complex is a general site for crude region-based segmentation, based on findings of equivalent hemodynamic activations in the lateral occipital complex to illusory contour and so-called salient region stimuli, a stimulus class that lacks the classic bounding contours of illusory contours. Using high-density electrical mapping of visual evoked potentials, we show that early lateral occipital cortex activity is substantially stronger to illusory contour than to salient region stimuli, whereas later lateral occipital complex activity is stronger to salient region than to illusory contour stimuli. Our results suggest that equivalent hemodynamic activity to illusory contour and salient region stimuli probably reflects temporally integrated responses, a result of the poor temporal resolution of hemodynamic imaging. The temporal precision of visual evoked potentials is critical for establishing viable models of completion processes and visual scene analysis. We propose that crude spatial segmentation analyses, which are insensitive to illusory contours, occur first within dorsal visual regions, not the lateral occipital complex, and that initial illusory contour sensitivity is a function of the lateral occipital complex.
Resumo:
Pseudomonas fluorescens strain CHA0 is able to protect plants against a variety of pathogens, notably by producing the two antimicrobial compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). The regulation of the expression of these compounds is affected by many biotic factors, such as fungal pathogens, rhizosphere bacteria as well as plant species. Therefore, the influence of some plant phenolic compounds on the expression of DAPG and PLT biosynthetic genes has been tested using GFP-based reporter, monitored by standard fluometry and flow cytometry. In situ experiments were also performed with cucumber plants. We found that several plant metabolites such as IAA and umbelliferone are able to modify significantly the expression of DAPG and PLT. The use of flow cytometry with autofluorescents proteins seems to be a promising method to study rhizobacteria-plant interactions.
Resumo:
BACKGROUND: The aim of this retrospective and monocentric study was to describe the magnetic resonance cholangiography (MRC) features of biliary abnormalities related to extrahepatic obstruction of the portal vein (EHOPV). METHODS: From September 2001 to May 2003, MRC was performed in 10 consecutive patients who had a portal thrombosis. RESULTS: Biliary ductal pathology was demonstrated via MRC in nine patients. It consisted of stenoses, ductal narrowing or irregularities involving the common bile duct for three patients with extrahepatic portal vein thrombosis discovered a mean of 1.5 years ago, or involving both right and left intrahepatic bile ducts and common bile duct for six patients with extrahepatic portal vein thrombosis discovered a mean of 16.2 years ago. Dilation of intrahepatic bile ducts was seen for seven patients, four of them having cholestasis. For three patients with symptomatic cholestasis, direct cholangiography (DC) was performed and showed the same findings as MRC which nevertheless overestimated the degree of bile duct stenosis. CONCLUSIONS: MRC seems to constitute an accurate tool to investigate noninvasively patients with portal biliopathy.
Resumo:
Genetically engineered bioreporters are an excellent complement to traditional methods of chemical analysis. The application of fluorescence flow cytometry to detection of bioreporter response enables rapid and efficient characterization of bacterial bioreporter population response on a single-cell basis. In the present study, intrapopulation response variability was used to obtain higher analytical sensitivity and precision. We have analyzed flow cytometric data for an arsenic-sensitive bacterial bioreporter using an artificial neural network-based adaptive clustering approach (a single-layer perceptron model). Results for this approach are far superior to other methods that we have applied to this fluorescent bioreporter (e.g., the arsenic detection limit is 0.01 microM, substantially lower than for other detection methods/algorithms). The approach is highly efficient computationally and can be implemented on a real-time basis, thus having potential for future development of high-throughput screening applications.
Resumo:
OBJECTIVES: This study sought to establish an accurate and reproducible T(2)-mapping cardiac magnetic resonance (CMR) methodology at 3 T and to evaluate it in healthy volunteers and patients with myocardial infarct. BACKGROUND: Myocardial edema affects the T(2) relaxation time on CMR. Therefore, T(2)-mapping has been established to characterize edema at 1.5 T. A 3 T implementation designed for longitudinal studies and aimed at guiding and monitoring therapy remains to be implemented, thoroughly characterized, and evaluated in vivo. METHODS: A free-breathing navigator-gated radial CMR pulse sequence with an adiabatic T(2) preparation module and an empirical fitting equation for T(2) quantification was optimized using numerical simulations and was validated at 3 T in a phantom study. Its reproducibility for myocardial T(2) quantification was then ascertained in healthy volunteers and improved using an external reference phantom with known T(2). In a small cohort of patients with established myocardial infarction, the local T(2) value and extent of the edematous region were determined and compared with conventional T(2)-weighted CMR and x-ray coronary angiography, where available. RESULTS: The numerical simulations and phantom study demonstrated that the empirical fitting equation is significantly more accurate for T(2) quantification than that for the more conventional exponential decay. The volunteer study consistently demonstrated a reproducibility error as low as 2 ± 1% using the external reference phantom and an average myocardial T(2) of 38.5 ± 4.5 ms. Intraobserver and interobserver variability in the volunteers were -0.04 ± 0.89 ms (p = 0.86) and -0.23 ± 0.91 ms (p = 0.87), respectively. In the infarction patients, the T(2) in edema was 62.4 ± 9.2 ms and was consistent with the x-ray angiographic findings. Simultaneously, the extent of the edematous region by T(2)-mapping correlated well with that from the T(2)-weighted images (r = 0.91). CONCLUSIONS: The new, well-characterized 3 T methodology enables robust and accurate cardiac T(2)-mapping at 3 T with high spatial resolution, while the addition of a reference phantom improves reproducibility. This technique may be well suited for longitudinal studies in patients with suspected or established heart disease.
Resumo:
Our objective was to establish the age-related 3D size of maxillary, sphenoid, and frontal sinuses. A total of 179 magnetic resonance imaging (MRI) of children under 17 years (76 females, 103 males) were included and sinuses were measured in the three axes. Maxillary sinuses measured at birth (mean+/-standard deviation) 7.3+/-2.7 mm length (or antero-posterior)/4.0+/-0.9 mm height (or cranio-caudal)/2.7+/-0.8 mm width (or transverse). At 16 years old, maxillary sinus measured 38.8+/-3.5 mm/36.3+/-6.2 mm/27.5+/-4.2 mm. Sphenoid sinus pneumatization starts in the third year of life after conversion from red to fatty marrow with mean values of 5.8+/-1.4 mm/8.0+/-2.3 mm/5.8+/-1.0 mm. Pneumatization progresses gradually to reach at 16 years 23.0+/-4.5 mm/22.6+/-5.8 mm/12.8+/-3.1 mm. Frontal sinuses present a wide variation in size and most of the time are not valuable with routine head MRI techniques. They are not aerated before the age of 6 years. Frontal sinuses dimensions at 16 years were 12.8+/-5.0 mm/21.9+/-8.4 mm/24.5+/-13.3 mm. A sinus volume index (SVI) of maxillary and sphenoid sinus was computed using a simplified ellipsoid volume formula, and a table with SVI according to age with percentile variations is proposed for easy clinical application. Percentile curves of maxillary and sphenoid sinuses are presented to provide a basis for objective determination of sinus size and volume during development. These data are applicable to other techniques such as conventional X-ray and CT scan.