993 resultados para Open Cylindrical Pores


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the electron-hole pair confined in a simplified infinite potential. The low-lying excition states in a ZnO cylindrical nanodisk are calculated based on effective-mass theory. To further understand the optical properties, we calculate the linear optical susceptibilities chi(w) and the radiative recombination lifetime tau of excitons in a ZnO nanodisk. The exciton radiative lifetime in a cylindrical nanodisk is of the order of tens of picoseconds, which is small compared with the lifetime of bulk ZnO material. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3006134]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By viewing the non-equilibrium transport setup as a quantum open system, we propose a reduced-density-matrix based quantum transport formalism. At the level of self-consistent Born approximation, it can precisely account for the correlation between tunneling and the system internal many-body interaction, leading to certain novel behavior such as the non-equilibrium Kondo effect. It also opens a new way to construct time-dependent density functional theory for transport through large-scale complex systems. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excess Helmholtz free energy functional for associating hard sphere fluid is formulated by using a modified fundamental measure theory [Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002)]. Within the framework of density functional theory, the thermodynamic properties including phase equilibria for both molecules and monomers, equilibrium plate-fluid interfacial tensions and isotherms of excess adsorption, average molecule density, average monomer density, and plate-fluid interfacial tension for four-site associating hard sphere fluids confined in slit pores are investigated. The phase equilibria inside the hard slit pores and attractive slit pores are determined according to the requirement that temperature, chemical potential, and grand potential in coexistence phases should be equal and the plate-fluid interfacial tensions at equilibrium states are predicted consequently. The influences of association energy, fluid-solid interaction, and pore width on phase equilibria and equilibrium plate-fluid interfacial tensions are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the interband optical absorption spectra near the band edge of a cylindrical semiconductor quantum wire in the presence of a static electric field and a terahertz electric field polarized along the axis. Optical absorption spectra are nonperturbatively calculated by solving the low-density semiconductor Bloch equations in real space and real time. The influence of the Franz-Keldysh (FK) effect and dynamical FK effect on the absorption spectrum is investigated. To highlight the physics behind the FK effect and dynamical FK effect, the spatiotemporal dynamics of the polarization wave packet are also presented. Under a reasonable static electric field, substantial and tunable absorption oscillations appear above the band gap. A terahertz field, however, will cause the Autler-Townes splitting of the main exciton peak and the emergence of multiphoton replicas. The presented results suggest that semiconductor quantum wires have potential applications in electro-optical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional atomic scattering theory is developed for scattering of electrons by a circularly symmetric quantum structure in the two-dimensional electron gas. It is found that the scattering cross section oscillates as a function of ka where k is the electron wave vector and a is the radius of the cylindrical potential barrier. If there is a quantum well inside the potential barrier, there appears a series of sharp resonant-tunneling peaks superposed on the original scattering-cross-section curves. The width of the resonant-tunneling peak depends sensitively on the thickness, the height of the potential barrier, and the electron energy.