936 resultados para Occlusal equilibrium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a simple variation of the Allingham and Sandmo (1972) construct and integrates it to a dynamic general equilibrium framework with heterogeneous agents. We study an overlapping generations framework i n which agents must initially decide whether to evade taxes or not. In the event they decide to evade, they then have to decide the extent of income or wealth they wish to under-report. We find that in comparison with the basic approach, the ‘evade or not’ choice drastically reduced the extent of evasion in the economy. This outcome is the result of an anomaly intrinsic to the basic Allingham and Sandmo version of the model, which makes the evade-or-not extension a more suitable approach to modelling the issue. We also find that the basic model, and the model with and ‘evade-or-not’ choice have strikingly different political economy implications, , which suggest fruitful avenues of empirical research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We advance the proposition that dynamic stochastic general equilibrium (DSGE) models should not only be estimated and evaluated with full information methods. These require that the complete system of equations be specified properly. Some limited information analysis, which focuses upon specific equations, is therefore likely to be a useful complement to full system analysis. Two major problems occur when implementing limited information methods. These are the presence of forward-looking expectations in the system as well as unobservable non-stationary variables. We present methods for dealing with both of these difficulties, and illustrate the interaction between full and limited information methods using a well-known model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we investigate and compare the Maxwell–Stefan and Nernst–Planck equations for modeling multicomponent charge transport in liquid electrolytes. Specifically, we consider charge transport in the Li+/I−/I3−/ACN ternary electrolyte originally found in dye-sensitized solar cells. We employ molecular dynamics simulations to obtain the Maxwell–Stefan diffusivities for this electrolyte. These simulated diffusion coefficients are used in a multicomponent charge transport model based on the Maxwell– Stefan equations, and this is compared to a Nernst–Planck based model which employs binary diffusion coefficients sourced from the literature. We show that significant differences between the electrolyte concentrations at electrode interfaces, as predicted by the Maxwell–Stefan and Nernst–Planck models, can occur. We find that these differences are driven by a pressure term that appears in the Maxwell–Stefan equations. We also investigate what effects the Maxwell–Stefan diffusivities have on the simulated charge transport. By incorporating binary diffusivities found in the literature into the Maxwell–Stefan framework, we show that the simulated transient concentration profiles depend on the diffusivities; however, the simulated equilibrium profiles remain unaffected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mud crab (Scylla spp.) aquaculture industry has expanded rapidly in recent years in many countries in the Indo - West Pacific (IWP) region as an alternative to marine shrimp culture because of significant disease outbreaks and associated failures of many shrimp culture industries in the region. Currently, practices used to produce and manage breeding crabs in hatcheries may compromise levels of genetic diversity, ultimately compromising growth rates, disease resistance and stock productivity. Therefore, to avoid “genetic pollution” and its harmful effects and to promote further development of mud crab aquaculture and fisheries in a sustainable way, a greater understanding of the genetic attributes of wild and cultured mud crab stocks is required. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations for multiple purposes including for commercial production, recreation and conservation and to increase profitability and sustainability of newly emerging crab culture industries. Phylogeographic patterns and the genetic structure of Asian mud crab populations across the IWP were assessed to determine if they were concordant with those of other widespread taxa possessing pelagic larvae of relatively long duration. A 597 bp fragment of the mitochondrial DNA COI gene was amplified and screened for variation in a total of 297 individuals of S. paramamosain from six sampling sites across the species’ natural geographical distribution in the IWP and 36 unique haplotypes were identified. Haplotype diversities per site ranged from 0.516 to 0.879. Nucleotide diversity estimates among haplotypes were 0.11% – 0.48%. Maximum divergence observed among S. paramamosain samples was 1.533% and samples formed essentially a single monophyletic group as no obvious clades were related to geographical location of sites. A weak positive relationship was observed however, between genetic distance and geographical distance among sites. Microsatellite markers were then used to assess contemporary gene flow and population structure in Asian mud crab populations sampled across their natural distribution in the IWP. Eight microsatellite loci were screened in sampled S. paramamosain populations and all showed high allelic diversity at all loci in sampled populations. In total, 344 individuals were analysed, and 304 microsatellite alleles were found across the 8 loci. The mean number of alleles per locus at each site ranged from 20.75 to 28.25. Mean allelic richness per site varied from 17.2 to 18.9. All sites showed high levels of heterozygosity as average expected heterozygosities for all loci ranged from 0.917 – 0.953 while mean observed heterozygosity ranged from 0.916 – 0.959. Allele diversities were similar at all sites and across all loci. The results did not show any evidence for major differences in allele frequencies among sites and patterns of allele frequencies were very similar in all populations across all loci. Estimates of population differentiation (FST) were relatively low and most probably largely reflect intra – individual variation for very highly variable loci. Results from nDNA analysis showed evidence for only very limited population genetic structure among sampled S. paramamosain, and a positive and significant association for genetic and geographical distance among sample sites. Microsatellite markers were then employed to determine if adequate levels of genetic diversity has been captured in crab hatcheries for the breeding cycle. The results showed that all microsatellite loci were polymorphic in hatchery samples. Culture populations were in general, highly genetically depauperate, compared with comparable wild populations, with only 3 to 8 alleles recorded for the same loci set per population. In contrast, very high numbers of alleles per locus were found in reference wild S. paramamosain populations, which ranged from 18 to 46 alleles per locus per population. In general, this translates into a 3 to 10 fold decline in mean allelic richness per locus in all culture stocks compared with wild reference counterparts. Furthermore, most loci in all cultured S. paramamosain samples showed departures from HWE equilibrium. Allele frequencies were very different in culture samples from that present in comparable wild reference samples and this in particular, was reflected in a large decline in allele diversity per locus. The pattern observed was best explained by significant impacts of breeding practices employed in hatcheries rather than natural differentiation among wild populations used as the source of brood stock. Recognition of current problems and management strategies for the species both for the medium and long-term development of the new culture industry are discussed. The priority research to be undertaken over the medium term for S. paramamosain should be to close the life cycle fully to allow individuals to be bred on demand and their offspring equalised to control broodstock reproductive contributions. Establishing a broodstock register and pedigree mating system will be required before any selection program is implemented. This will ensure that sufficient genetic variation will be available to allow genetic gains to be sustainably achieved in a future stock improvement program. A fundamental starting point to improve hatchery practices will be to encourage farmers and hatchery managers to spawn more females in their hatcheries as it will increase background genetic diversity in culture stocks. Combining crablet cohorts from multiple hatcheries into a single cohort for supply to farmers or rotation of breeding females regularly in hatcheries will help to address immediate genetic diversity problems in culture stocks. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations more efficiently. Over the long-term, application of data on genetic diversity in wild and cultured stocks of Asian mud crab will contribute to development of sustainable and productive culture industries in Vietnam and other countries in the IWP and can contribute towards conservation of wild genetic resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the content, origin and development of Tendering Theory as a theory of price determination. It demonstrates how tendering theory determines market prices and how it is different from game and decision theories, and that in the tendering process, with non-cooperative, simultaneous, single sealed bids with individual private valuations, extensive public information, a large number of bidders and a long sequence of tendering occasions, there develops a competitive equilibrium. The development of a competitive equilibrium means that the concept of the tender as the sum of a valuation and a strategy, which is at the core of tendering theory, cannot be supported and that there are serious empirical, theoretical and methodological inconsistencies in the theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Airy stress function, although frequently employed in classical linear elasticity, does not receive similar usage for granular media problems. For plane strain quasi-static deformations of a cohesionless Coulomb–Mohr granular solid, a single nonlinear partial differential equation is formulated for the Airy stress function by combining the equilibrium equations with the yield condition. This has certain advantages from the usual approach, in which two stress invariants and a stress angle are introduced, and a system of two partial differential equations is needed to describe the flow. In the present study, the symmetry analysis of differential equations is utilised for our single partial differential equation, and by computing an optimal system of one-dimensional Lie algebras, a complete set of group-invariant solutions is derived. By this it is meant that any group-invariant solution of the governing partial differential equation (provided it can be derived via the classical symmetries method) may be obtained as a member of this set by a suitable group transformation. For general values of the parameters (angle of internal friction and gravity g) it is found there are three distinct classes of solutions which correspond to granular flows considered previously in the literature. For the two limiting cases of high angle of internal friction and zero gravity, the governing partial differential equation admit larger families of Lie point symmetries, and from these symmetries, further solutions are derived, many of which are new. Furthermore, the majority of these solutions are exact, which is rare for granular flow, especially in the case of gravity driven flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper argues a model of open system design for sustainable architecture, based on a thermodynamics framework of entropy as an evolutionary paradigm. The framework can be simplified to stating that an open system evolves in a non-linear pattern from a far-from-equilibrium state towards a non-equilibrium state of entropy balance, which is a highly ordered organization of the system when order comes out of chaos. This paper is work in progress on a PhD research project which aims to propose building information modelling for optimization and adaptation of buildings environmental performance as an alternative sustainable design program in architecture. It will be used for efficient distribution and consumption of energy and material resource in life-cycle buildings, with the active involvement of the end-users and the physical constraints of the natural environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of calcium hydroxide (Ca(OH)2) in Bayer residue slurry inhibits the effectiveness of the seawater neutralisation process to reduce the pH and aluminium concentration in the residue. An increase in the slurry pH (reversion), after seawater neutralisation, is caused by the dissolution of calcium hydroxide and hydrocalumite (solid components found in bauxite refinery residue). Reversion was not observed when the final solution pH was greater than 10.5, due to hydrocalumite being in a state of equilibrium at high pH. Hydrocalumite has been found to form during the neutralisation process when high concentrations of calcium hydroxide are present in the residue liquor. The dissolution of hydrocalumite releases hydroxyl (OH-) and aluminium ions back into solution after the seawater neutralisation (SWN) process, which causes pH and aluminium reversion to occur. This investigation looks at the effect of Ca(OH)2 and subsequently hydrocalumite on the pH and aluminium concentration in bauxite refinery residue liquors after the SWN process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of reports have demonstrated the importance of the CUB domaincontaining protein 1 (CDCP1) in facilitating cancer progression in animal models and the potential of this protein as a prognostic marker in several malignancies. CDCP1 facilitates metastasis formation in animal models by negatively regulating anoikis, a type of apoptosis triggered by the loss of attachment signalling from cell-cell contacts or cell-extra cellular matrix (ECM) contacts. Due to the important role CDCP1 plays in cancer progression in model systems, it is considered a potential drug target to prevent the metastatic spread of cancers. CDCP1 is a highly glycosylated 836 amino acid cell surface protein. It has structural features potentially facilitating protein-protein interactions including 14 N-glycosylation sites, three CUB-like domains, 20 cysteine residues likely to be involved in disulfide bond formation and five intracellular tyrosine residues. CDCP1 interacts with a variety of proteins including Src family kinases (SFKs) and protein kinase C ä (PKCä). Efforts to understand the mechanisms regulating these interactions have largely focussed on three CDCP1 tyrosine residues Y734, Y743 and Y762. CDCP1-Y734 is the site where SFKs phosphorylate and bind to CDCP1 and mediate subsequent phosphorylation of CDCP1-Y743 and -Y762 which leads to binding of PKCä at CDCP1-Y762. The resulting trimeric protein complex of SFK•CDCP1•PKCä has been proposed to mediate an anti-apoptotic cell phenotype in vitro, and to promote metastasis in vivo. The effect of mutation of the three tyrosines on interactions of CDCP1 with SFKs and PKCä and the consequences on cell phenotype in vitro and in vivo have not been examined. CDCP1 has a predicted molecular weight of ~90 kDa but is usually detected as a protein which migrates at ~135 kDa by Western blot analysis due to its high degree of glycosylation. A low molecular weight form of CDCP1 (LMWCDCP1) of ~70 kDa has been found in a variety of cancer cell lines. The mechanisms leading to the generation of LMW-CDCP1 in vivo are not well understood but an involvement of proteases in this process has been proposed. Serine proteases including plasmin and trypsin are able to proteolytically process CDCP1. In addition, the recombinant protease domain of the serine protease matriptase is also able to cleave the recombinant extracellular portion of CDCP1. Whether matriptase is able to proteolytically process CDCP1 on the cell surface has not been examined. Importantly, proteolytic processing of CDCP1 by trypsin leads to phosphorylation of its cell surface-retained portion which suggests that this event leads to initiation of an intracellular signalling cascade. This project aimed to further examine the biology of CDCP1 with a main of focus on exploring the roles played by CDCP1 tyrosine residues. To achieve this HeLa cells stably expressing CDCP1 or the CDCP1 tyrosine mutants Y734F, Y743F and Y762F were generated. These cell lines were used to examine: • The roles of the tyrosine residues Y734, Y743 and Y762 in mediating interactions of CDCP1 with binding proteins and to examine the effect of the stable expression on HeLa cell morphology. • The ability of the serine protease matriptase to proteolytically process cell surface CDCP1 and to examine the consequences of this event on HeLa cell phenotype and cell signalling in vitro. • The importance of these residues in processes associated with cancer progression in vitro including adhesion, proliferation and migration. • The role of these residues on metastatic phenotype in vivo and the ability of a function-blocking anti-CDCP1 antibody to inhibit metastasis in the chicken embryo chorioallantoic membrane (CAM) assay. Interestingly, biochemical experiments carried out in this study revealed that mutation of certain CDCP1 tyrosine residues impacts on interactions of this protein with binding proteins. For example, binding of SFKs as well as PKCä to CDCP1 was markedly decreased in HeLa-CDCP1-Y734F cells, and binding of PKCä was also reduced in HeLa-CDCP1-Y762F cells. In contrast, HeLa-CDCP1-Y743F cells did not display altered interactions with CDCP1 binding proteins. Importantly, observed differences in interactions of CDCP1 with binding partners impacted on basal phosphorylation of CDCP1. It was found that HeLa-CDCP1, HeLa-CDCP1-Y743F and -Y762F displayed strong basal levels of CDCP1 phosphorylation. In contrast, HeLa-CDCP1-Y734F cells did not display CDCP1 phosphorylation but exhibited constitutive phosphorylation of focal adhesion kinase (FAK) at tyrosine 861. Significantly, subsequent investigations to examine this observation suggested that CDCP1-Y734 and FAK-Y861 are competitive substrates for SFK-mediated phosphorylation. It appeared that SFK-mediated phosphorylation of CDCP1- Y734 and FAK-Y861 is an equilibrium which shifts depending on the level of CDCP1 expression in HeLa cells. This suggests that the level of CDCP1 expression may act as a regulatory mechanism allowing cells to switch from a FAK-Y861 mediated pathway to a CDCP1-Y734 mediated pathway. This is the first time that a link between SFKs, CDCP1 and FAK has been demonstrated. One of the most interesting observations from this work was that CDCP1 altered HeLa cell morphology causing an elongated and fibroblastic-like appearance. Importantly, this morphological change depended on CDCP1- Y734. In addition, it was observed that this change in cell morphology was accompanied by increased phosphorylation of SFK-Y416. This suggests that interactions of SFKs with CDCP1-Y734 increases SFK activity since SFKY416 is critical in regulating kinase activity of these proteins. The essential role of SFKs in mediating CDCP1-induced HeLa cell morphological changes was demonstrated using the SFK-selective inhibitor SU6656. This inhibitor caused reversion of HeLa-CDCP1 cell morphology to an epithelial appearance characteristic of HeLa-vector cells. Significantly, in vitro studies revealed that certain CDCP1-mediated cell phenotypes are mediated by cellular pathways dependent on CDCP1 tyrosine residues whereas others are independent of these sites. For example, CDCP1 expression caused a marked increase in HeLa cell motility that was independent of CDCP1 tyrosine residues. In contrast, CDCP1- induced decrease in HeLa cell proliferation was most prominent in HeLa- CDCP1-Y762F cells, potentially indicating a role for this site in regulating proliferation in HeLa cells. Another cellular event which was identified to require phosphorylation of a particular CDCP1 tyrosine residue is adhesion to fibronectin. It was observed that the CDCP1-mediated strong decrease in adhesion to fibronectin is mostly restored in HeLa-CDCP1-Y743F cells. This suggests a possible role for CDCP1-Y743 in causing a CDCP1-mediated decrease in adhesion. Data from in vivo experiments indicated that HeLa-CDCP1-Y734F cells are more metastic than HeLa-CDCP1 cells in vivo. This indicates that interaction of CDCP1 with SFKs and PKCä may not be required for CDCP1-mediated metastasis formation of HeLa cells in vivo. The metastatic phenotype of these cells may be caused by signalling involving FAK since HeLa-CDCP1- Y734F cells are the only CDCP1 expressing cells displaying constitutive phosphorylation of FAK-Y861. HeLa-CDCP1-Y762F cells displayed a very low metastatic ability which suggests that this CDCP1 tyrosine residue is important in mediating a pro-metastatic phenotype in HeLa cells. More detailed exploration of cellular events occurring downstream of CDCP1-Y734 and -Y762 may provide important insights into the mechanisms altering the metastatic ability of CDCP1 expressing HeLa cells. Complementing the in vivo studies, anti-CDCP1 antibodies were employed to assess whether these antibodies are able to inhibit metastasis of CDCP1 and CDCP1 tyrosine mutants expressing HeLa cells. It was found that HeLa- CDCP1-Y734F cells were the only cell line which was markedly reduced in the ability to metastasise. In contrast, the ability of HeLa-CDCP1, HeLa- CDCP1-Y743F and -Y762F cells to metastasise in vivo was not inhibited. These data suggest a possible role of interactions of CDCP1 with SFKs, occurring at CDCP1-Y734, in preventing an anti-metastatic effect of anti- CDCP1 antibodies in vivo. The proposal that SFKs may play a role in regulating anti-metastatic effects of anti-CDCP1 antibodies was supported by another experiment where differences between HeLa-CDCP1 cells and CDCP1 expressing HeLa cells (HeLa-CDCP1-S) from collaborators at the Scripps Research Institute were examined. It was found that HeLa-CDCP1-S cells express different SFKs than CDCP1 expressing HeLa cells generated for this study. This is important since HeLa-CDCP1-S cells can be inhibited in their metastatic ability using anti-CDCP1 antibodies in vivo. Importantly, these data suggest that further examinations of the roles of SFKs in facilitating anti-metastatic effects of anti-CDCP1 antibodies may give insights into how CDCP1 can be blocked to prevent metastasis in vivo. This project also explored the ability of the serine protease matriptase to proteolytically process cell surface localised CDCP1 because it is unknown whether matriptase can cleave cell surface CDCP1 as it has been reported for other proteases such as trypsin and plasmin. Furthermore, the consequences of matriptase-mediated proteolysis on cell phenotype in vitro and cell signalling were examined since recent reports suggested that proteolysis of CDCP1 leads to its phosphorylation and may initiate cell signalling and consequently alter cell phenotype. It was found that matriptase is able to proteolytically process cell surface CDCP1 at low nanomolar concentrations which suggests that cleavage of CDCP1 by matriptase may facilitate the generation of LWM-CDCP1 in vivo. To examine whether matriptase-mediated proteolysis induced cell signalling anti-phospho Erk 1/2 Western blot analysis was performed as this pathway has previously been examined to study signalling in response to proteolytic processing of cell surface proteins. It was found that matriptase-mediated proteolysis in CDCP1 expressing HeLa cells initiated intracellular signalling via Erk 1/2. Interestingly, this increase in phosphorylation of Erk 1/2 was also observed in HeLa-vector cells. This suggested that initiation of cell signalling via Erk 1/2 phosphorylation as a result of matriptase-mediated proteolysis occurs by pathways independent of CDCP1. Subsequent investigations measuring the flux of free calcium ions and by using a protease-activated receptor 2 (PAR2) agonist peptide confirmed this hypothesis. These data suggested that matriptase-mediated proteolysis results in cell signalling via a pathway induced by the activation of PAR2 rather than by CDCP1. This indicates that induction of cell signalling in HeLa cells as a consequence of matriptase-mediated proteolysis occurs via signalling pathways which do not involve phosphorylation of Erk 1/2. Consequently, it appears that future attempts should focus on the examination of cellular pathways other than Erk 1/2 to elucidate cell signalling initiated by matriptase-mediated proteolytic processing of CDCP1. The data presented in this thesis has explored in vitro and in vivo aspects of the biology of CDCP1. The observations summarised above will permit the design of future studies to more precisely determine the role of CDCP1 and its binding partners in processes relevant to cancer progression. This may contribute to further defining CDCP1 as a target for cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The indoline dyes D102, D131, D149, and D205 have been characterized when adsorved on fluorine-doped tin oxide (FTO) and TiO2 electrode surfaces. Adsorption from 50:50 acetonitrile - tert-butanol onto flourine-doped tin oxide (FTO) allows approximate Langmuirian binding constants of 6.5 x 10(4), 2.01 x 10(3), 2.0 x 10(4), and 1.5 x 10(4) mol-1 dm3, respectively, to be determined. Voltammetric data obtained in acetonitrile/0.1 M NBu4PF6 indicate reversible on-electron oxidation at Emid = 0.94, 0.91, 0.88, and 0.88 V vs Ag/AgCI(3 M KCI), respectively, with dye aggregation (at high coverage) causing additional peak features at more positive potentials. Slow chemical degradation processes and electron transfer catalysis for iodine oxidation were observed for all four oxidezed indolinium cations. When adsorbed onto TiO2 nanoparticle films (ca. 9nm particle diameter and ca.3/um thickness of FTO0, reversible voltammetric responses with Emid = 1.08, 1.156, 0.92 and 0.95 V vs Ag/AgCI(3 M KCI), respectively, suggest exceptionally fast hole hopping diffusion (with Dapp > 5 x 10(-9) m2 s-1) for adsorbed layers of four indoline dyes, presumably due to pie-pie stacking in surface aggregates. Slow dye degradation is shown to affect charge transport via electron hopping. Spectrelectrochemical data for the adsorbed indoline dyes on FTO-TiO2 revealed a red-shift of absorption peaks after oxidation and the presence of a strong charge transfer band in the near-IR region. The implications of the indoline dye reactivity and fast hole mobility for solar cell devices are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electron collection efficiency in dye-sensitized solar cells (DSCs) is usually related to the electron diffusion length, L = (Dτ)1/2, where D is the diffusion coefficient of mobile electrons and τ is their lifetime, which is determined by electron transfer to the redox electrolyte. Analysis of incident photon-to-current efficiency (IPCE) spectra for front and rear illumination consistently gives smaller values of L than those derived from small amplitude methods. We show that the IPCE analysis is incorrect if recombination is not first-order in free electron concentration, and we demonstrate that the intensity dependence of the apparent L derived by first-order analysis of IPCE measurements and the voltage dependence of L derived from perturbation experiments can be fitted using the same reaction order, γ ≈ 0.8. The new analysis presented in this letter resolves the controversy over why L values derived from small amplitude methods are larger than those obtained from IPCE data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single air bubble rising in xanthan gum crystal suspension has been studied experimentally. The suspension was made by different concentrations of xanthan gum solutions with 0.23 mm polystyrene crystal particles. Drag co-efficient data and a new correlation of drag coefficient is presented for spherical and nonspherical bubbles in non-Newtonian crystal suspension. The correlation is developed in terms of the Reynolds number, Re and the bubble shape factor, � (the ratio between the surface equivalent sphere diameter to the volume equivalent sphere diameter). The experimental drag coefficient was found to be consistent with this new predicted correlation and published data over the ranges, 0.1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chondrocyte density in articular cartilage is known to change with the development and growth of the tissue and may play an important role in the formation of a functional extracellular matrix (ECM). The objective of this study was to determine how initial chondrocyte density in an alginate hydrogel affects the matrix composition, its distribution between the cell-associated (CM) and further removed matrix (FRM) fractions, and the tensile mechanical properties of the developing engineered cartilage. Alginate constructs containing primary bovine chondrocytes at densities of 0, 4, 16, and 64 million cells/ml were fabricated and cultured for 1 or 2 weeks, at which time structural, biochemical, and mechanical properties were analyzed. Both matrix content and distribution varied with the initial cell density. Increasing cell density resulted in an increasing content of collagen and sulfated-glycosaminoglycan (GAG) and an increasing proportion of these molecules localized in the CM. While the equilibrium tensile modulus of cell-free alginate did not change with time in culture, the constructs with highest cell density were 116% stiffer than cell-free controls after 2 weeks of culture. The equilibrium tensile modulus was positively correlated with total collagen (r2 = 0.47, p < 0.001) and GAG content (r2 = 0.68, p < 0.001), and these relationships were enhanced when analyzing only those matrix molecules in the CM fraction (r2 = 0.60 and 0.72 for collagen and GAG, respectively, each p < 0.001). Overall, the results of this study indicate that initial cell density has a considerable effect on the developing composition, structure, and function of alginate–chondrocyte constructs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adult articular cartilage has depth-dependent mechanical and biochemical properties which contribute to zone-specific functions. The compressive moduli of immature cartilage and tissue-engineered cartilage are known to be lower than those of adult cartilage. The objective of this study was to determine if such tissues exhibit depth-dependent compressive properties, and how these depth-varying properties were correlated with cell and matrix composition of the tissue. The compressive moduli of fetal and newborn bovine articular cartilage increased with depth (p < 0.05) by a factor of 4-5 from the top 0.1 mm (28 +/- 13 kPa, 141 +/- 10 kPa, respectively) to 1 mm deep into the tissue. Likewise, the glycosaminoglycan and collagen content increased with depth (both p < 0.001), and correlated with the modulus (both p < 0.01). In contrast, tissue-engineered cartilage formed by either layering or mixing cells from the superficial and middle zone of articular cartilage exhibited similarly soft regions at both construct surfaces, as exemplified by large equilibrium strains. The properties of immature cartilage may provide a template for developing tissue-engineered cartilage which aims to repair cartilage defects by recapitulating the natural development and growth processes. These results suggest that while depth-dependent properties may be important to engineer into cartilage constructs, issues other than cell heterogeneity must be addressed to generate such tissues. (c) 2005 Elsevier Ltd. All rights reserved.