1000 resultados para OXIDE PYROCHLORES
Resumo:
© 2014 AIP Publishing LLC. Superparamagnetic nanoparticles are employed in a broad range of applications that demand detailed magnetic characterization for superior performance, e.g., in drug delivery or cancer treatment. Magnetic hysteresis measurements provide information on saturation magnetization and coercive force for bulk material but can be equivocal for particles having a broad size distribution. Here, first-order reversal curves (FORCs) are used to evaluate the effective magnetic particle size and interaction between equally sized magnetic iron oxide (Fe2O3) nanoparticles with three different morphologies: (i) pure Fe2O3, (ii) Janus-like, and (iii) core/shell Fe2O3/SiO2synthesized using flame technology. By characterizing the distribution in coercive force and interaction field from the FORC diagrams, we find that the presence of SiO2in the core/shell structures significantly reduces the average coercive force in comparison to the Janus-like Fe2O3/SiO2and pure Fe2O3particles. This is attributed to the reduction in the dipolar interaction between particles, which in turn reduces the effective magnetic particle size. Hence, FORC analysis allows for a finer distinction between equally sized Fe2O3particles with similar magnetic hysteresis curves that can significantly influence the final nanoparticle performance.
Resumo:
© 2013 IEEE. This paper reviews the mechanisms underlying visible light detection based on phototransistors fabricated using amorphous oxide semiconductor technology. Although this family of materials is perceived to be optically transparent, the presence of oxygen deficiency defects, such as vacancies, located at subgap states, and their ionization under illumination, gives rise to absorption of blue and green photons. At higher energies, we have the usual band-to-band absorption. In particular, the oxygen defects remain ionized even after illumination ceases, leading to persistent photoconductivity, which can limit the frame-rate of active matrix imaging arrays. However, the persistence in photoconductivity can be overcome through deployment of a gate pulsing scheme enabling realistic frame rates for advanced applications such as sensor-embedded display for touch-free interaction.
Power Law Dependence of Field-Effect Mobility in Amorphous Oxide Semiconductor Thin Film Transistors
Resumo:
Current-voltage behaviour of oxide TFTs is modeled based on trap-limited conduction and percolation theories. The mobility has a power-law dependence, in which percolation controls the exponent while trap states determine constant term in the power law. The proposed model, which is fully physically-based, provides a good agreement with measured transistor characteristics as well as transient operations of fabricated pixel test circuits for oxide-based OLED displays. © 2013 Society for Information Display.