929 resultados para ONE-LAYER MODEL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggressive driving is considered an important road-safety concern for drivers in highly motorised countries. However, understanding of the causes and maintenance factors fundamental to aggressive driving is limited. In keeping with theoretical advances from general aggression research such as the General Aggression Model (GAM), research has begun to examine the emotional and cognitive antecedents of aggressive driving in order to better understand the underlying processes motivating aggressive driving. Early findings in the driving area have suggested that greater levels of aggression are elicited in response to an intentionally aggressive on-road event. In contrast, general aggression research suggests that greater levels of aggression are elicited in response to an ambiguous event. The current study examined emotional and cognitive responses to two hypothetical driving scenarios with differing levels of aggressive intent (intentional versus ambiguous). There was also an interest in whether factors influencing responses were different for hostile aggression (that is, where the action is intended to harm the other) versus instrumental aggression (that is, where the action is motivated by an intention to remove an impediment or attain a goal). Results were that significantly stronger negative emotion and negative attributions, as well as greater levels of threat were reported in response to the scenario which was designed to appear intentional in nature. In addition, participants were more likely to endorse an aggressive behavioural response to a situation that appeared deliberately aggressive than to one where the intention was ambiguous. Analyses to determine if greater levels of negative emotions and cognitions are able to predict aggressive responses provided different patterns of results for instrumental aggression from those for hostile aggression. Specifically, for instrumental aggression, negative emotions and negative attributions were significant predictors for both the intentional and the ambiguous scenarios. In addition, perceived threat was also a significant predictor where the other driver’s intent was clearly aggressive. However, lower rather than higher, levels of perceived threat were associated with greater endorsement of an aggressive response. For hostile aggressive behavioural responses, trait aggression was the strongest predictor for both situations. Overall the results suggest that in the driving context, instrumental aggression is likely to be a much more common response than hostile aggression. Moreover, aggressive responses are more likely in situations where another driver’s behaviour is clearly intentional rather than ambiguous. The results also support the conclusion that there may be different underlying mechanisms motivating an instrumental aggressive response to those motivating a hostile one. In addition, understanding the emotions and cognitions underlying aggressive driving responses may be helpful in predicting and intervening to reduce driving aggression. The finding that drivers appear to regard tailgating as an instrumental response is of concern since this behaviour has the potential to result in crashes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work-in-progress paper presents an ensemble-based model for detecting and mitigating Distributed Denial-of-Service (DDoS) attacks, and its partial implementation. The model utilises network traffic analysis and MIB (Management Information Base) server load analysis features for detecting a wide range of network and application layer DDoS attacks and distinguishing them from Flash Events. The proposed model will be evaluated against realistic synthetic network traffic generated using a software-based traffic generator that we have developed as part of this research. In this paper, we summarise our previous work, highlight the current work being undertaken along with preliminary results obtained and outline the future directions of our work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last few decades, construction project performance has been evaluated due to the increase of delays, cost overruns and quality failures. Growing numbers of disputes, inharmonious working environments, conflict, blame cultures, and mismatches of objectives among project teams have been found to be contributory factors to poor project performance. Performance measurement (PM) approaches have been developed to overcome these issues, however, the comprehensiveness of PM as an overall approach is still criticised in terms of the iron triangle; namely time, cost, and quality. PM has primarily focused on objective measures, however, continuous improvement requires the inclusion of subjective measures, particularly contractor satisfaction (Co-S). It is challenging to deal with the two different groups of large and small-medium contractor satisfaction as to date, Co-S has not been extensively defined, primarily in developing countries such as Malaysia. Therefore, a Co-S model is developed in this research which aims to fulfil the current needs in the construction industry by integrating performance measures to address large and small-medium contractor perceptions. The positivist paradigm used in the research was adhered to by reviewing relevant literature and evaluating expert discussions on the research topic. It yielded a basis for the contractor satisfaction model (CoSMo) development which consists of three elements: contractor satisfaction (Co-S) dimensions; contributory factors and characteristics (project and participant). Using valid questionnaire results from 136 contractors in Malaysia lead to the prediction of several key factors of contractor satisfaction and to an examination of the relationships between elements. The relationships were examined through a series of sequential statistical analyses, namely correlation, one-way analysis of variance (ANOVA), t-tests and multiple regression analysis (MRA). Forward and backward MRAs were used to develop Co-S mathematical models. Sixteen Co-S models were developed for both large and small-medium contractors. These determined that the large contractor Malaysian Co-S was most affected by the conciseness of project scope and quality of the project brief. Contrastingly, Co-S for small-medium contractors was strongly affected by the efficiency of risk control in a project. The results of the research provide empirical evidence in support of the notion that appropriate communication systems in projects negatively contributes to large Co-S with respect to cost and profitability. The uniqueness of several Co-S predictors was also identified through a series of analyses on small-medium contractors. These contractors appear to be less satisfied than large contractors when participants lack effectiveness in timely authoritative decision-making and communication between project team members. Interestingly, the empirical results show that effective project health and safety measures are influencing factors in satisfying both large and small-medium contractors. The perspectives of large and small-medium contractors in respect to the performance of the entire project development were derived from the Co-S models. These were statistically validated and refined before a new Co-S model was developed. Developing such a unique model has the potential to increase project value and benefit all project participants. It is important to improve participant collaboration as it leads to better project performance. This study may encourage key project participants; such as client, consultant, subcontractor and supplier; to increase their attention to contractor needs in the development of a project. Recommendations for future research include investigating other participants‟ perspectives on CoSMo and the impact of the implementation of CoSMo in a project, since this study is focused purely on the contractor perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: About one third of refugee and humanitarian entrants to Australia are women age 12—44 years. Pregnant women from refugee backgrounds may have been exposed to a range of medical and psychosocial issues that can impact maternal, fetal and neonatal health. Research question: What are the key elements that characterise a best practice model of maternity care for women from refugee backgrounds? This paper outlines the findings of a project which aimed at developing such a model at a major maternity hospital in Brisbane, Australia. Participants and methods: This multifaceted project included a literature review, consultations with key stakeholders, a chart audit of hospital use by African-born women in 2006 that included their obstetric outcomes, a survey of 23 African-born women who gave birth at the hospital in 2007—08, and a survey of 168 hospital staff members. Results: The maternity chart audit identified complex medical and social histories among the women, including anaemia, female circumcision, hepatitis B, thrombocytopenia, and barriers to access antenatal care. The rates of caesarean sections and obstetric complications increased over time. Women and hospital staff surveys indicated the need for adequate interpreting services, education programs for women regarding antenatal and postnatal care, and professional development for health care staff to enhance cultural responsiveness. Discussion and conclusions: The findings point towards the need for a model of refugee maternity care that comprises continuity of carer, quality interpreter services, educational strategies for both women and healthcare professionals, and the provision of psychosocial support to women from refugee backgrounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vehicular Ad-hoc Networks (VANET) have different characteristics compared to other mobile ad-hoc networks. The dynamic nature of the vehicles which act as routers and clients are connected with unreliable radio links and Routing becomes a complex problem. First we propose CO-GPSR (Cooperative GPSR), an extension of the traditional GPSR (Greedy Perimeter Stateless Routing) which uses relay nodes which exploit radio path diversity in a vehicular network to increase routing performance. Next we formulate a Multi-objective decision making problem to select optimum packet relaying nodes to increase the routing performance further. We use cross layer information for the optimization process. We evaluate the routing performance more comprehensively using realistic vehicular traces and a Nakagami fading propagation model optimized for highway scenarios in VANETs. Our results show that when Multi-objective decision making is used for cross layer optimization of routing a 70% performance increment can be obtained for low vehicle densities on average, which is a two fold increase compared to the single criteria maximization approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A synthesis is presented of the predictive capability of a family of near-wall wall-normal free Reynolds stress models (which are completely independent of wall topology, i.e., of the distance fromthe wall and the normal-to-thewall orientation) for oblique-shock-wave/turbulent-boundary-layer interactions. For the purpose of comparison, results are also presented using a standard low turbulence Reynolds number k–ε closure and a Reynolds stress model that uses geometric wall normals and wall distances. Studied shock-wave Mach numbers are in the range MSW = 2.85–2.9 and incoming boundary-layer-thickness Reynolds numbers are in the range Reδ0 = 1–2×106. Computations were carefully checked for grid convergence. Comparison with measurements shows satisfactory agreement, improving on results obtained using a k–ε model, and highlights the relative importance of redistribution and diffusion closures, indicating directions for future modeling work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of inflow turbulence on the results of Favre–Reynolds-averaged Navier–Stokes computations of supersonic oblique-shock-wave/turbulent-boundary-layer interactions (shock-wave Mach-number MSW ∼2.9), using seven-equation Reynolds-stress model turbulence closures, is studied. The generation of inflow conditions (and the initialization of the flowfield) for mean flow, Reynolds stresses, and turbulence length scale, based on semi-analytic grid-independent boundary-layer profiles, is described in detail. Particular emphasis is given to freestream turbulence intensity and length scale. The influence of external-flow turbulence intensity is studied in detail both for flat-plate boundary-layer flow and for a compression-ramp interaction with large separation. It is concluded that the Reynolds-stress model correctly reproduces the effects of external flow turbulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal Asset Maintenance decisions are imperative for efficient asset management. Decision Support Systems are often used to help asset managers make maintenance decisions, but high quality decision support must be based on sound decision-making principles. For long-lived assets, a successful Asset Maintenance decision-making process must effectively handle multiple time scales. For example, high-level strategic plans are normally made for periods of years, while daily operational decisions may need to be made within a space of mere minutes. When making strategic decisions, one usually has the luxury of time to explore alternatives, whereas routine operational decisions must often be made with no time for contemplation. In this paper, we present an innovative, flexible decision-making process model which distinguishes meta-level decision making, i.e., deciding how to make decisions, from the information gathering and analysis steps required to make the decisions themselves. The new model can accommodate various decision types. Three industrial case studies are given to demonstrate its applicability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As business process management technology matures, organisations acquire more and more business process models. The management of the resulting collections of process models poses real challenges. One of these challenges concerns model retrieval where support should be provided for the formulation and efficient execution of business process model queries. As queries based on only structural information cannot deal with all querying requirements in practice, there should be support for queries that require knowledge of process model semantics. In this paper we formally define a process model query language that is based on semantic relationships between tasks in process models and is independent of any particular process modelling notation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent decades have witnessed a global acceleration of legislative and private sector initiatives to deal with Cross-Border insolvency. Legislative institutions include the various national implementations of the Model Law on Cross-Border Insolvency (Model Law) published by the United Nations Commission on International Trade (UNCITRAL).3 Private mechanisms include Cross-Border protocols developed and utilised by insolvency professionals and their advisers (often with the imprimatur of the judiciary), on both general and ad hoc bases. The Asia Pacific region has not escaped the effect of those developments, and the economic turmoil of the past few years has provided an early test for some of the emerging initiatives in that region. This two-part article explores the operation of those institutions through the medium of three recent cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capacity probability models of generating units are commonly used in many power system reliability studies, at hierarchical level one (HLI). Analytical modelling of a generating system with many units or generating units with many derated states in a system, can result in an extensive number of states in the capacity model. Limitations on available memory and computational time of present computer facilities can pose difficulties for assessment of such systems in many studies. A cluster procedure using the nearest centroid sorting method was used for IEEE-RTS load model. The application proved to be very effective in producing a highly similar model with substantially fewer states. This paper presents an extended application of the clustering method to include capacity probability representation. A series of sensitivity studies are illustrated using IEEE-RTS generating system and load models. The loss of load and energy expectations (LOLE, LOEE), are used as indicators to evaluate the application

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advanced programmatic risk analysis and management model (APRAM) is one of the recently developed methods that can be used for risk analysis and management purposes considering schedule, cost, and quality risks simultaneously. However, this model considers those failure risks that occur only over the design and construction phases of a project’s life cycle. While it can be sufficient for some projects for which the required cost during the operating life is much less than the budget required over the construction period, it should be modified in relation to infrastructure projects because the associated costs during the operating life cycle are significant. In this paper, a modified APRAM is proposed, which can consider potential risks that might occur over the entire life cycle of the project, including technical and managerial failure risks. Therefore, the modified model can be used as an efficient decision-support tool for construction managers in the housing industry in which various alternatives might be technically available. The modified method is demonstrated by using a real building project, and this demonstration shows that it can be employed efficiently by construction managers. The Delphi method was applied in order to figure out the failure events and their associated probabilities. The results show that although the initial cost of a cold-formed steel structural system is higher than a conventional construction system, the former’s failure cost is much lower than the latter’s

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chatrooms, for example Internet Relay Chat, are generally multi-user, multi-channel and multiserver chat-systems which run over the Internet and provide a protocol for real-time text-based conferencing between users all over the world. While a well-trained human observer is able to understand who is chatting with whom, there are no efficient and accurate automated tools to determine the groups of users conversing with each other. A precursor to analysing evolving cyber-social phenomena is to first determine what the conversations are and which groups of chatters are involved in each conversation. We consider this problem in this paper. We propose an algorithm to discover all groups of users that are engaged in conversation. Our algorithms are based on a statistical model of a chatroom that is founded on our experience with real chatrooms. Our approach does not require any semantic analysis of the conversations, rather it is based purely on the statistical information contained in the sequence of posts. We improve the accuracy by applying some graph algorithms to clean the statistical information. We present some experimental results which indicate that one can automatically determine the conversing groups in a chatroom, purely on the basis of statistical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.