939 resultados para OCEANIC WATERS
Resumo:
Facultative and obligate oligotrophs have been enumerated in March/April 1990 by the MPN-method with 14C-protein hydrolysate as tracer substrate. Obligate (10-3360 cells/ml) and facultative (110-9000 cells/ml) oligotrophs revealed to be the dominant population above Gunnerus Ridge (65°30'-68°S; 31-35°E) at a depth of 25 m compared with eutrophic bacteria (5 to 260 CFU/ml). Above Astrid Ridge (65-68°S; 8-18°E), obligate (0-1100 cells/ml) and facultative oligotrophs (300-9000 cells/ml) were also abundant but not always dominant. Bacterial biomass above Gunnerus Ridge was only between 7.3 and 43.6% of particulate biomass, but biomass of bacteria above Astrid Ridge amounted from 56.9 to >100% of particulate biomass; an exception was station no. PS16/552 with only 22.2% of bacterial biomass. Ratio of bacterial biomass to particulate biomass was negatively correlated with maximal primary production, complementing the view that phytoplankton was the dominant population above Gunnerus Ridge, whereas bacteria predominated above Astrid Ridge. Eutrophic bacteria were also more abundant above Astrid Ridge, with 3 to 6380 CFU/ml. Total bacteria by acridine orange direct counts amounted from 1 x 10**4 to 34.2 x 10**4 cells/ml. Bacterial biomass above Gunnerus Ridge was 1.8 to 10.7, and above Astrid Ridge 5.7 to 13.6 mg C/m*3. Maximal primary production above Gunnerus Ridge was 4.5 to 11.0, and above Astrid Ridge 2.3 to 3.5 mg C/m**3/d.
Resumo:
Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.
Resumo:
In order to assess recent submarine volcanic contributions to the sediments from the active Kolbeinsey Ridge, surface samples were analyzed chemically. The contribution of major and trace elements studied differ within the study area. A statistical analysis of the geochemical variables using factor analysis and cluster method allows to distinguish possible sample groups. Cluster method identifies three distinct sediment groups located in different areas of sedimentation. Group 1 is characterized by highest contents of Fe2O3, V, Co, Ni, Cu and Zn demonstrating the input of volcaniclastic material. Group 2 comprises high values of CaCO3, CaO and Sr representing biogenic carbonate. Group 3 is characterized by the elements K, Rb, Cs, La and Pb indicating the terrigenous component. The absolute percentage of the volcanic, biogenic and terrigenous components in the bulk sediments was calculated by using a normative sediment method. The highest volcanic component (> 60% on a carbonate free basis) is found on the ridge crest. The biogenic component is highest (10-30%) in the eastern part of the Spar Fracture Zone influenced by the East Iceland Current. Samples from the western and southeastern region of the study area contain more than 90% of terrigenous component which appears to be mainly controlled by input of ice-rafted debris.
Resumo:
Oxygen and strontium isotopes and Rb and Ba were determined in interstitial water (IW) collected from Sites 1109, 1115, and 1118 drilled on the Woodlark Rise during Ocean Drilling Program Leg 180. The trace element and mineralogical composition of the clay fraction of sediments isolated from the squeeze cakes corresponding to IW samples from Site 1109 was also determined.
Resumo:
Microbially mediated redox diagenetic processes in marine sediments are reflected in the amount and carbon isotopic composition of dissolved CO2 and CH4 (Claypool and Kaplan, 1974). Oxidation of organic matter gives rise to dissolved CO2 with about the same 13C/12C ratio as the starting organic matter. Subsequent reduction of CO2 to form CH4 involves a large (~70) kinetic isotopic effect, resulting in significant 13C depletion in the CH4, and 13C enrichment in the residual CO2. Ocean Drilling Program Leg 174A (offshore New Jersey) presented an opportunity to study these processes in shelf and upper slope sediments. Holes 1071A-1071D, 1071F, and 1072A were drilled on the shelf in water depths of 88.0-98.1 m. Hole 1073A was drilled on the slope in 639.4 m of water. Pore-water samples were collected for analysis at all three sites, whereas gas samples could only be obtained from Hole 1073A on the slope.
Resumo:
Bacterial cell number in the water column of the Kara Sea and estuary areas of the Ob and Yenisey Rivers was determined in water samples collected at 32 stations at depths from the surface to 200 m. The samples were analyzed by direct microscopy. In most parts of the sea microorganism concentrations ranged generally from 103 to 104 cells per ml and their biomasses from milligrams to tens of mg/m**3. Bacterioplankton concentration of river waters was much higher than in the open sea, especially in Ob waters. The highest bacteria concentrations, hundreds of thousands cells per ml with biomass exceeding 200 mg/m**3, were found in the southern part of the Ob section. Minimal concentrations were observed in the northeastern part and near the southeastern part of the Ob section and the southeastern coast of Novaya Zemlya. Dark CO2 fixation rates determined at some stations indicated low bacteria biomass production.
Resumo:
Measurements of 87Sr/86Sr ratios of interstitial waters from leg 25, site 245 and leg 38, site 336 of the Deep Sea Drilling Project show that the enrichment of Sr[2+] with depth is caused both by the alteration of volcanic material and by the introduction of strontium derived from calcium carbonate. 87Sr/86 Sr ratios range from 0.70913 to 0.70794 at site 245 and from 0.70916 to 0.70694 at site 336. The low ratios compared with contemporaneous seawater reflect the release of Sr from a volcanic source having, according to material-balance calculations, a 87Sr/86 Sr ratio of about 0.7034 at site 336. At this site the source appears to be volcanic ash and not basaltic basement which acts as a sink for Sr[2+] during in situ low-temperature weathering. The volcanic contribution to the strontium enrichment in the basal interstitial waters varies from <10% at site 245 to >50% at site 336. The remaining Sr[2+] is derived from Sr-rich biogenic carbonate during diagenetic recrystallization to form Sr-poor calcite.
Resumo:
Concentrations of dissolved and particulate manganese in relation with organic matter in waters of the Southwest Pacific are under consideration.