996 resultados para Nuclear Physics
Resumo:
We show results from an analysis performed to test the resolving power of a two-dimensional χ2 method proposed previously when applied to the case of kaon interferometry, where no significant contribution from long-lived resonances is expected. For that purpose, use is made of the preliminary E859 K+K+ interferometry data from Si+Au collisions at 14.6/4 GeV/c. Although less sensitivity is achieved in the present case, this analysis seems to favor scenarios with no resonance formation at the AGS energy range. The possible compatibility of data with zero decoupling proper time interval, conjectured by the three-dimensional experimental analysis, is also investigated and is ruled out when considering more realistic dynamical models with expanding sources. Furthermore, these results strongly emphasize that the static Gaussian parametrization cannot be trusted under more realistic conditions, leading to a distorted or even wrong interpretation of the source parameters.
Resumo:
We have reanalysed the atmospheric neutrino data including new results from Super-Kamiokande and Soudan-II experiments, under the assumption of two-flavor neutrino oscillation. We present the allowed region of oscillation parameters for the νμ → ντ channel. In performing this re-analysis we also take into account some recent theoretical improvements in the flux calculations.
Resumo:
The negative-dimensional integration method (NDIM) seems to be a very promising technique for evaluating massless and/or massive Feynman diagrams. It is unique in the sense that the method gives solutions in different regions of external momenta simultaneously. Moreover, it is a technique whereby the difficulties associated with performing parametric integrals in the standard approach are transferred to a simpler solving of a system of linear algebraic equations, thanks to the polynomial character of the relevant integrands. We employ this method to evaluate a scalar integral for a massless two-loop three-point vertex with all the external legs off-shell, and consider several special cases for it, yielding results, even for distinct simpler diagrams. We also consider the possibility of NDIM in non-covariant gauges such as the light-cone gauge and do some illustrative calculations, showing that for one-degree violation of covariance (i.e. one external, gauge-breaking, light-like vector n μ) the ensuing results are concordant with the ones obtained via either the usual dimensional regularization technique, or the use of the principal value prescription for the gauge-dependent pole, while for two-degree violation of covariance - i.e. two external, light-like vectors n μ, the gauge-breaking one, and (its dual) n * μ - the ensuing results are concordant with the ones obtained via causal constraints or the use of the so-called generalized Mandelstam-Leibbrandt prescription. © 1999 Elsevier Science B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The methods of effective field theory are used to explore the theoretical and phenomenological aspects of the torsion field. The spinor action coupled to the electromagnetic field and torsion possesses an additional softly broken gauge symmetry. This symmetry enables one to derive the unique form of the torsion action compatible with unitarity and renormalizability. It turns out that the antisymmetric torsion field is equivalent to a massive axial vector field. The introduction of scalars leads to serious problems which are revealed after the calculation of the leading two-loop divergences. Thus the phenomenological aspects of torsion may be studied only for the fermion-torsion systems. In this part of the paper we obtain upper bounds for the torsion parameters using present experimental data on forward-backward Z-pole asymmetries, data on the experimental limits on four-fermion contact interaction (LEP, HERA, SLAC, SLD, CCFR) and also TEVATRON limits on the cross section of a new gauge boson, which could be produced as a resonance at high energy pp collisions. The present experimental data enable one to put limits on the torsion parameters for the various ranges of the torsion mass. We emphasize that for a torsion mass of the order of the Planck mass no independent theory for torsion is possible, and one must directly use string theory. © 1999 Elsevier Science B.V.
Resumo:
The mean field description of nuclear matter in the quark-meson coupling model is improved by the inclusion of exchange contributions (Fock terms). The inclusion of Fock terms allows us to explore the momentum dependence of meson-nucleon vertices and the role of pionic degrees of freedom in matter. It is found that the Fock terms maintain the previous predictions of the model for the in-medium properties of the nucleon and for the nuclear incompressibility. The Fock terms significantly increase the absolute values of the single-particle, four-component scalar and vector potentials, a feature that is relevant for the spin-orbit splitting in finite nuclei. © 1999 Elsevier Science B.V.
Resumo:
We study chargino pair production at LEP II in supersymmetric models with spontaneously broken R-parity. We perform signal and background analyses, showing that a large region of the parameter space of these models can be probed through chargino searches at LEP II. In particular, we determine the attainable limits on the chargino mass as a function of the magnitude of the effective bilinear R-parity violation parameter ∈, demonstrating that LEP II is able to unravel the existence of charginos with masses almost up to their kinematical limit even in the case of R-parity violation. This requires the study of several final state topologies since the usual MSSM chargino signature is recovered as ∈ → 0. Moreover, for sufficiently large ∈ values, for which the chargino decay mode χ ± → τ ± J dominates, we find through a dedicated Monte Carlo analysis that the χ ± mass bounds are again very close to the kinematic limit. Our results establish the robustness of the chargino mass limit, in the sense that it is basically model-independent. They also show that LEP II can establish the existence of spontaneous R-parity violation in a large region of parameter space should charginos be produced. © 1999 Elsevier Science B.V.
Resumo:
A renormalization scheme for the nucleon-nucleon (NN) interaction based on a subtracted T-matrix equation is proposed and applied to the one-pion-exchange potential supplemented by contact interactions. The singlet and triplet scattering lengths are given to fix the renormalized strengths of the contact interactions. With only one scaling parameter (μ), the results show an overall very good agreement with neutron-proton data, particularly for the observables related to the triplet channel. The agreement is qualitative in the 1 S0 channel. Between the low-energy NN observables we have examined, the mixing parameter of the 3S1-3D1 states is the most sensitive to the scale. The scheme is renormalization group invariant for μ → ∞. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Generalized nucleon polarizabilities for virtual photons can be defined in terms of electroproduction cross sections as function of the 4-momentum transfer Q2. In particular, the sum of the generalized electric and magnetic polarizabilities ∑ = α + β and the spin polarizability γ can be expressed by virtual photon absorption cross sections integrated over the excitation energy. These quantities have been calculated within the framework of the recently developed unitary isobar model for pion photo- and electroproduction on the proton, which describes the available experimental data up to an excitation energy of about 1 GeV. Our results have been compared to the predictions of chiral perturbation theory. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A sigma model action with N = 2 D = 6 superspace variables is constructed for the Type II superstring compactified to six curved dimensions with Ramond - Ramond flux. The action can be quantized since the sigma model is linear when the six-dimensional space-time is flat. When the six-dimensional space-time is AdS 3 × S 3, the action reduces to one found earlier with Vafa and Witten. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We discuss effects of fragmentation and hard gluon radiation on the signal for the pair production of the lighter scalar top eigenstate t̃1 at e+e- colliders. The main emphasis is on scenarios with small stop-LSP mass splitting, where strong interaction effects can considerably modify kinematical properties of the final state.
Resumo:
We present predictions for the spin structure functions of the proton in the framework of a unitary isobar model for one-pion photo- and electroproduction. Our results are compared with recent experimental data from SLAC. The first moments of the calculated structure functions fullfil the Gerasimov-Drell-Hearn and Burkhardt-Cottingham sum rules within an error of typically 5-10%.
Resumo:
We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
It is shown that three-body non-Borromean halo nuclei like 12Be, 18C, 20C, considered as neutron-neutron-core systems, have p-wave virtual states with energy of about 1.7 times the corresponding neutron-core binding energy. We use a renormalizable model that guarantees the general validity of our results in the context of short range interactions.
Resumo:
We show that the tail of the chiral two-pion exchange nucleon-nucleon potential is proportional to the pion-nucleon (πN) scalar form factor and discuss how it can be translated into effective scalar meson interactions. We then construct a kernel for the process NN → πNN, due to the exchange of two pions, which may be used in either three-body forces or pion production in NN scattering. Our final expression involves a partial cancellation among three terms, due to chiral symmetry, but the net result is still important. We also find that, at large internucleon distances, the kernel has the same spatial dependence as the central NN potential and we produce expressions relating these processes directly.