946 resultados para Notes of the financial statement
Resumo:
Negli anni la funzione dei social network è cambiata molte volte. Alle origini i social network erano uno strumento di connessione tra amici, ora sono siti internet in cui le persone mettono informazioni e quando un social network ha milioni di utenti, diventa un’incredibile sorgente di dati. Twitter è uno dei siti internet più visitati, e viene descritto come “the SMS of internet”, perchè è un social network che permette ai suoi utenti di inviare e leggere messaggi corti, di 140 caratteri, chiamati “tweets”. Con il passare del tempo Twitter `e diventato una fonte fondamentale di notizie. Il suo grande numero di utenti permette alle notizie di espandersi nella rete in modo virale. Molte persone hanno cercato di analizzare il potere dei tweet, come il contenuto positivo o negativo, mentre altri hanno cercato di capire se avessero un potere predittivo. In particolare nel mondo finanziario, sono state avviate molte ricerche per verificare l’esistenza di una effettiva correlazione tra i tweets e la fluttuazione del mercato azionario. L’effettiva presenza di tale relazione unita a un modello predittivo, potrebbe portare allo sviluppo di un modello che analizzando i tweets presenti nella rete, relativi a un titolo azionario, dia informazioni sulle future variazioni del titolo stesso. La nostra attenzione si è rivolata alla ricerca e validazione statistica di tale correlazione. Sono stati effettuati test su singole azioni, sulla base dei dati disponibili, poi estesi a tutto il dataset per vedere la tendenza generale e attribuire maggior valore al risultato. Questa ricerca è caratterizzata dal suo dataset di tweet che analizza un periodo di oltre 2 anni, uno dei periodi più lunghi mai analizzati. Si è cercato di fornire maggior valore ai risultati trovati tramite l’utilizzo di validazioni statistiche, come il “permutation test”, per validare la relazione tra tweets di un titolo con i relativi valori azionari, la rimozione di una percentuale di eventi importanti, per mostrare la dipendenza o indipendenza dei dati dagli eventi più evidenti dell’anno e il “granger causality test”, per capire la direzione di una previsione tra serie. Sono stati effettuati anche test con risultati fallimentari, dai quali si sono ricavate le direzioni per i futuri sviluppi di questa ricerca.
Resumo:
Patients with an implantable cardioverter defibrillator (ICD) have an ongoing risk of sudden incapacitation that might cause harm to others while driving a car. Driving restrictions vary across different countries in Europe. The most recent recommendations for driving of ICD patients in Europe were published in 1997 and focused mainly on patients implanted for secondary prevention. In recent years there has been a vast increase in the number of patients with an ICD and in the percentage of patients implanted for primary prevention. The EHRA task force on ICD and driving was formed to reassess the risk of driving for ICD patients based on the literature available. The recommendations are summarized in the following table and are further explained in the document, (Table see text). Driving restrictions are perceived as difficult for patients and their families, and have an immediate consequence for their lifestyle. To increase the adherence to the driving restrictions, adequate discharge of education and follow-up of patients and family are pivotal. The task force members hope this document may serve as an instrument for European and national regulatory authorities to formulate uniform driving regulations.
Resumo:
U.S. financial deregulation is often popularly presented as a fundamental attack on financial regulation that began with neoliberalism's Big Bang in 1980. This paper argues this position is wrong in two ways. First, it is a process that stretches back decades before 1980. Textbook mentions of 1970s precursor "financial innovations" fall far short of presenting the breadth and duration of the pre-1980 attack on the system of regulation. Second, it has not been an across-the-board attack on financial regulation in the name of market efficiency as required by its ideology and claimed by its advocates, but rather a focused attack on only one of the five pillars of the system of regulation. This paper develops both of these assertions through a presentation of the five central pillars of the pre-1980 system of financial regulation, and the four major attacks on the three different aspects of the restrictions on financial competition.
Resumo:
We appreciate the thorough discussion provided by Professor Yuan Ding. His comments raise legitimate issues. In this response, we offer clarifications and suggest avenues for future research. Our response follows the structure of the discussant’s paper and elaborates on each point separately.
Resumo:
Galina Kovaleva. The Formation of the Exchange Rate on the Russian Market: Dynamics and Modelling. The Russian financial market is fast becoming one of the major sectors of the Russian economy. Assets have been increasing steadily, while new market segments and new financial market instruments have emerged. Kovaleva attempted to isolate the factors influencing exchange rates, determine patterns in the dynamic changes to the rouble/dollar exchange rate, construct models of the processes, and on the basis of these activities make forecasts. She studied the significance of economic indicators influencing the rouble/dollar exchange rate at different times, and developed multi-factor econometric models. In order to reveal the inner structure of the financial indicators and to work out ex-post forecasts for different time intervals, she carried out a series of calculations with the aim of constructing trend-cyclical (TC) and harmonic models, and Box and Jenkins models. She found that: 1. The Russian financial market is dependant on the rouble/dollar exchange rate. Its dynamics are formed under the influence of the short-term state treasury notes and government bonds markets, interbank loans, the rouble/DM exchange rate, the inflation rate, and the DM/dollar exchange rate. The exchange rate is influenced by sales on the Moscow Interbank Currency Exchange and the mechanism of those sales. 2. The TC model makes it possible to conduct an in-depth study of the structure of the processes and to make forecasts of the dynamic changes to currency indicators. 3. The Russian market is increasingly influenced by the world currency market and its prospects are of crucial interest for the world financial community.