911 resultados para North American
Resumo:
Bachman’s Sparrow (Peucaea aestivalis), an endemic North American passerine, requires frequent (≤ 3 yr) prescribed fires to maintain preferred habitat conditions. Prescribed fires that coincide with the sparrow’s nesting season are increasingly used to manage sparrow habitat, but concerns exist regarding the effects that nesting-season fires may pose to this understory-dwelling species. Previous studies suggested that threats posed by fires might be lessened by reducing the extent of prescribed fires, thereby providing unburned areas close to the areas where fires eliminate ground-cover vegetation. To assess this hypothesis, we monitored color-marked male Bachman’s Sparrows on 2 sites where the extent of nesting-season fires differed 5-fold (> 70 ha vs. < 15 ha). Monthly survival for males did not differ between the large- and small-extent treatments, and survival rates exceeded 90% for all months except one during the second year of our study when fires were applied later in the season. Male densities also did not differ between treatments, but treatment-by-year interactions pointed to effects relating to the specific time that fires were applied. The distances separating observations of marked males before and after burns were smaller on small-extent treatments in the first year of study but larger on the small-extent treatments in the second year of study. Burn extents also had no consistent effect on postburn reproductive status. The largest extent we examined could have been too small to affect sparrow populations, but responses may also reflect sustainable metapopulation dynamics in a setting where a large sparrow population is maintained at a regional scale (> 100,000 ha) using frequent prescribed fire (≤ 2-yr return intervals). Additional research is needed regarding the effects that nesting-season fires may have on small, isolated populations as well as sites where much larger burn extents (> 100 ha) or longer burn intervals (> 2 yr) are used.
Resumo:
The Canadian Migration Monitoring Network (CMMN) consists of standardized observation and migration count stations located largely along Canada’s southern border. A major purpose of CMMN is to detect population trends of migratory passerines that breed primarily in the boreal forest and are otherwise poorly monitored by the North American Breeding Bird Survey (BBS). A primary limitation of this approach to monitoring is that it is currently not clear which geographic regions of the boreal forest are represented by the trends generated for each bird species at each station or group of stations. Such information on “catchment areas” for CMMN will greatly enhance their value in contributing to understanding causes of population trends, as well as facilitating joint trend analysis for stations with similar catchments. It is now well established that naturally occurring concentrations of deuterium in feathers grown in North America can provide information on their approximate geographic origins, especially latitude. We used stable hydrogen isotope analyses of feathers (δ²Hf) from 15 species intercepted at 22 CMMN stations to assign approximate origins to populations moving through stations or groups of stations. We further constrained the potential catchment areas using prior information on potential longitudinal origins based upon bird migration trajectories predicted from band recovery data and known breeding distributions. We detected several cases of differences in catchment area of species passing through sites, and between seasons within species. We discuss the importance of our findings, and future directions for using this approach to assist conservation of migratory birds at continental scales.
Resumo:
The North American Breeding Bird Survey (BBS) is the principal source of data to inform researchers about the status of and trend for boreal forest birds. Unfortunately, little BBS coverage is available in the boreal forest, where increasing concern over the status of species breeding there has increased interest in northward expansion of the BBS. However, high disturbance rates in the boreal forest may complicate roadside monitoring. If the roadside sampling frame does not capture variation in disturbance rates because of either road placement or the use of roads for resource extraction, biased trend estimates might result. In this study, we examined roadside bias in the proportional representation of habitat disturbance via spatial data on forest “loss,” forest fires, and anthropogenic disturbance. In each of 455 BBS routes, the area disturbed within multiple buffers away from the road was calculated and compared against the area disturbed in degree blocks and BBS strata. We found a nonlinear relationship between bias and distance from the road, suggesting forest loss and forest fires were underrepresented below 75 and 100 m, respectively. In contrast, anthropogenic disturbance was overrepresented at distances below 500 m and underrepresented thereafter. After accounting for distance from road, BBS routes were reasonably representative of the degree blocks they were within, with only a few strata showing biased representation. In general, anthropogenic disturbance is overrepresented in southern strata, and forest fires are underrepresented in almost all strata. Similar biases exist when comparing the entire road network and the subset sampled by BBS routes against the amount of disturbance within BBS strata; however, the magnitude of biases differed. Based on our results, we recommend that spatial stratification and rotating panel designs be used to spread limited BBS and off-road sampling effort in an unbiased fashion and that new BBS routes be established where sufficient road coverage exists.
Resumo:
In the event of a release of toxic gas in the center of London, the emergency services would need to determine quickly the extent of the area contaminated. The transport of pollutants by turbulent flow within the complex street and building architecture of cities is not straightforward, and we might wonder whether it is at all possible to make a scientifically-reasoned decision. Here we describe recent progress from a major UK project, ‘Dispersion of Air Pollution and its Penetration into the Local Environment’ (DAPPLE, www.dapple.org.uk). In DAPPLE, we focus on the movement of airborne pollutants in cities by developing a greater understanding of atmospheric flow and dispersion within urban street networks. In particular, we carried out full-scale dispersion experiments in central London (UK) during 2003, 2004, 2007, and 2008 to address the extent of the dispersion of tracers following their release at street level. These measurements complemented previous studies because (i) our focus was on dispersion within the first kilometer from the source, when most of the material was expected to remain within the street network rather than being mixed into the boundary layer aloft, (ii) measurements were made under a wide variety of meteorological conditions, and (iii) central London represents a European, rather than North American, city geometry. Interpretation of the results from the full-scale experiments was supported by extensive numerical and wind tunnel modeling, which allowed more detailed analysis under idealized and controlled conditions. In this article, we review the full-scale DAPPLE methodologies and show early results from the analysis of the 2007 field campaign data.
Resumo:
Understanding links between the El Nino-Southern Oscillation (ENSO) and snow would be useful for seasonal forecasting, but also for understanding natural variability and interpreting climate change predictions. Here, a 545-year run of the general circulation model HadCM3, with prescribed external forcings and fixed greenhouse gas concentrations, is used to explore the impact of ENSO on snow water equivalent (SWE) anomalies. In North America, positive ENSO events reduce the mean SWE and skew the distribution towards lower values, and vice versa during negative ENSO events. This is associated with a dipole SWE anomaly structure, with anomalies of opposite sign centered in western Canada and the central United States. In Eurasia, warm episodes lead to a more positively skewed distribution and the mean SWE is raised. Again, the opposite effect is seen during cold episodes. In Eurasia the largest anomalies are concentrated in the Himalayas. These correlations with February SWE distribution are seen to exist from the previous June-July-August (JJA) ENSO index onwards, and are weakly detected in 50-year subsections of the control run, but only a shifted North American response can be detected in the anaylsis of 40 years of ERA40 reanalysis data. The ENSO signal in SWE from the long run could still contribute to regional predictions although it would be a weak indicator only
Resumo:
Investigation of preferred structures of planetary wave dynamics is addressed using multivariate Gaussian mixture models. The number of components in the mixture is obtained using order statistics of the mixing proportions, hence avoiding previous difficulties related to sample sizes and independence issues. The method is first applied to a few low-order stochastic dynamical systems and data from a general circulation model. The method is next applied to winter daily 500-hPa heights from 1949 to 2003 over the Northern Hemisphere. A spatial clustering algorithm is first applied to the leading two principal components (PCs) and shows significant clustering. The clustering is particularly robust for the first half of the record and less for the second half. The mixture model is then used to identify the clusters. Two highly significant extratropical planetary-scale preferred structures are obtained within the first two to four EOF state space. The first pattern shows a Pacific-North American (PNA) pattern and a negative North Atlantic Oscillation (NAO), and the second pattern is nearly opposite to the first one. It is also observed that some subspaces show multivariate Gaussianity, compatible with linearity, whereas others show multivariate non-Gaussianity. The same analysis is also applied to two subperiods, before and after 1978, and shows a similar regime behavior, with a slight stronger support for the first subperiod. In addition a significant regime shift is also observed between the two periods as well as a change in the shape of the distribution. The patterns associated with the regime shifts reflect essentially a PNA pattern and an NAO pattern consistent with the observed global warming effect on climate and the observed shift in sea surface temperature around the mid-1970s.
Resumo:
Elucidating the controls on the location and vigor of ice streams is crucial to understanding the processes that lead to fast disintegration of ice flows and ice sheets. In the former North American Laurentide ice sheet, ice stream occurrence appears to have been governed by topographic troughs or areas of soft-sediment geology. This paper reports robust evidence of a major paleo-ice stream over the northwestern Canadian Shield, an area previously assumed to be incompatible with fast ice flow because of the low relief and relatively hard bedrock. A coherent pattern of subglacial bedforms (drumlins and megascalle glacial lineations) demarcates the ice stream flow set, which exhibits a convergent onset zone, a narrow main trunk with abrupt lateral margins, and a lobate terminus. Variations in bedform elongation ratio within the flow set match theoretical expectations of ice velocity. In the center of the ice stream, extremely parallel megascalle glacial lineations tens of kilometers long with elongation ratios in excess of 40:1 attest to a single episode of rapid ice flow. We conclude that while bed properties are likely to be influential in determining the occurrence and vigor of ice streams, contrary to established views, widespread soft-bed geology is not an essential requirement for those ice streams without topographic control. We speculate that the ice stream acted as a release valve on ice-sheet mass balance and was initiated by the presence of a proglacial lake that destabilized the ice-sheet margin and propagated fast ice flow through a series of thermomechanical feedbacks involving ice flow and temperature.
Resumo:
During deglaciation of the North American Laurentide Ice Sheet large proglacial lakes developed in positions where proglacial drainage was impeded by the ice margin. For some of these lakes, it is known that subsequent drainage had an abrupt and widespread impact on North Atlantic Ocean circulation and climate, but less is known about the impact that the lakes exerted on ice sheet dynamics. This paper reports palaeogeographic reconstructions of the evolution of proglacial lakes during deglaciation across the northwestern Canadian Shield, covering an area in excess of 1,000,000 km(2) as the ice sheet retreated some 600 km. The interactions between proglacial lakes and ice sheet flow are explored, with a particular emphasis on whether the disposition of lakes may have influenced the location of the Dubawnt Lake ice stream. This ice stream falls outside the existing paradigm for ice streams in the Laurentide Ice Sheet because it did not operate over fined-grained till or lie in a topographic trough. Ice margin positions and a digital elevation model are utilised to predict the geometry and depth of proglacial takes impounded at the margin at 30-km increments during deglaciation. Palaeogeographic reconstructions match well with previous independent estimates of lake coverage inferred from field evidence, and results suggest that the development of a deep lake in the Thelon drainage basin may have been influential in initiating the ice stream by inducing calving, drawing down ice and triggering fast ice flow. This is the only location alongside this sector of the ice sheet where large (>3000 km(2)), deep lakes (similar to120 m) are impounded for a significant length of time and exactly matches the location of the ice stream. It is speculated that the commencement of calving at the ice sheet margin may have taken the system beyond a threshold and was sufficient to trigger rapid motion but that once initiated, calving processes and losses were insignificant to the functioning of the ice stream. It is thus concluded that proglacial lakes are likely to have been an important control on ice sheet dynamics during deglaciation of the Laurentide Ice Sheet. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Victoria Island lies at the north-western extremity of the region covered by the vast North American Laurentide Ice Sheet (LIS) in the Canadian Arctic Archipelago. This area is significant because it linked the interior of the LIS to the Arctic Ocean, probably via a number of ice streams. Victoria Island, however, exhibits a remarkably complex glacial landscape, with several successive generations of ice flow indicators superimposed on top of each other and often at abrupt (90 degrees) angles. This complexity represents a major challenge to those attempting to produce a detailed reconstruction of the glacial history of the region. This paper presents a map of the glacial geomorphology of Victoria Island. The map is based on analysis of Landsat Enhanced Thematic Plus (ETM+) satellite imagery and contains over 58,000 individual glacial features which include: glacial lineations, moraines (terminal, lateral, subglacial shear margin), hummocky moraine, ribbed moraine, eskers, glaciofluvial deposits, large meltwater channels, and raised shorelines. The glacial features reveal marked changes in ice flow direction and vigour over time. Moreover, the glacial geomorphology indicates a non-steady withdrawal of ice during deglaciation, with rapidly flowing ice streams focussed into the inter-island troughs and several successively younger flow patterns superimposed on older ones. It is hoped that detailed analysis of this map will lead to an improved reconstruction of the glacial history of this area which will provide other important insights, for example, with respect to the interactions between ice streaming, deglaciation and Arctic Ocean meltwater events.
Resumo:
The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal time scales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Niño—Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Absent aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting current and future behaviour of monsoons.
Resumo:
Previous attempts to apply statistical models, which correlate nutrient intake with methane production, have been of limited. value where predictions are obtained for nutrient intakes and diet types outside those. used in model construction. Dynamic mechanistic models have proved more suitable for extrapolation, but they remain computationally expensive and are not applied easily in practical situations. The first objective of this research focused on employing conventional techniques to generate statistical models of methane production appropriate to United Kingdom dairy systems. The second objective was to evaluate these models and a model published previously using both United Kingdom and North American data sets. Thirdly, nonlinear models were considered as alternatives to the conventional linear regressions. The United Kingdom calorimetry data used to construct the linear models also were used to develop the three. nonlinear alternatives that were ball of modified Mitscherlich (monomolecular) form. Of the linear models tested,, an equation from the literature proved most reliable across the full range of evaluation data (root mean square prediction error = 21.3%). However, the Mitscherlich models demonstrated the greatest degree of adaptability across diet types and intake level. The most successful model for simulating the independent data was a modified Mitscherlich equation with the steepness parameter set to represent dietary starch-to-ADF ratio (root mean square prediction error = 20.6%). However, when such data were unavailable, simpler Mitscherlich forms relating dry matter or metabolizable energy intake to methane production remained better alternatives relative to their linear counterparts.
Resumo:
In this study, complementary species-level and intraspecific phylogenies were used to better circumscribe the original native range and history of translocation of the invasive tree Parkinsonia aculeata. Species-level phylogenies were reconstructed using three chloroplast gene regions, and amplified fragment length polymorphism (AFLP) markers were used to reconstruct the intraspecific phylogeny. Together, these phylogenies revealed the timescale of transcontinental lineage divergence and the likely source of recent introductions of the invasive. The sequence data showed that divergence between North American and Argentinean P. aculeata occurred at least 5.7 million years ago, refuting previous hypotheses of recent dispersal between North and South America. AFLP phylogenies revealed the most likely sources of naturalized populations. The AFLP data also identified putatively introgressed plants, underlining the importance of wide sampling of AFLPs and of comparison with uniparentally inherited marker data when investigating hybridizing groups. Although P. aculeata has generally been considered North American, these data show that the original native range of P. aculeata included South America; recent introductions to Africa and Australia are most likely to have occurred from South American populations.
Resumo:
Most suspension-feeding trichopterans spin a fine-silk capture net that is used to remove suspended matter from the water. The efficiency of these nets has previously been studied by considering the geometry of the web structure but the material from which the nets is constructed has received little attention. We report measurements of the tensile strength and extensibility of net silk from Hydropsyche siltalai. These measurements place caddisfly silk as one of the weakest natural silks so far reported, with a mean tensile strength of 221 +/- 22 megaNewtons (MN)/m(2). We also show that H. siltalai silk can more than double in length before catastrophic breakage, and that the silk is at least 2 orders of magnitude stronger than the maximum force estimated to act upon it in situ. Possible reasons for this disparity include constraints of evolutionary history and safety margins to prevent net failure or performance reduction.
Resumo:
This paper reviews the treatment of intellectual property rights in the North American Free Trade Agreement (NAFTA) and considers the welfare-theoretic bases for innovation transfer between member and nonmember states. Specifically, we consider the effects of new technology development from within the union and question whether it is efficient (in a welfare sense) to transfer that new technology to nonmember states. When the new technology contains stochastic components, the important issue of information exchange arises and we consider this question in a simple oligopoly model with Bayesian updating. In this context, it is natural to ask the optimal price at which such information should be transferred. Some simple, natural conjugate examples are used to motivate the key parameters upon which the answer is dependent
Resumo:
The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed. The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes. The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.