861 resultados para Nonlinear functional analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although the amine sulfur dioxide chemistry was well characterized in the past both experimentally and theoretically, no systematic Raman spectroscopic study describes the interaction between N,N-dimethylaniline (DMA) and sulfur dioxide (SO(2)). The formation of a deep red oil by the reaction of SO(2) with DMA is an evidence of the charge transfer (CT) nature of the DMA-SO(2) interaction. The DMA -SO(2) normal Raman spectrum shows the appearance of two intense bands at 1110 and 1151 cm(-1), which are enhanced when resonance is approached. These bands are assigned to nu(s)(SO(2)) and nu(phi-N) vibrational modes, respectively, confirming the interaction between SO(2) and the amine via the nitrogen atom. The dimethyl group steric effect favors the interaction of SO(2) with the ring pi electrons, which gives rise to a pi-pi* low-energy CT electronic transition, as confirmed by time-dependent density functional theory (TDDFT) calculations. In addition, the calculated Raman DMA-SO(2) spectrum at the B3LYP/6-311++g(3df,3pd) level shows good agreement with the experimental results (vibrational wavenumbers and relative intensities), allowing a complete assignment of the vibrational modes. A better understanding of the intermolecular interactions in this model system can be extremely useful in designing new materials to absorb, detect, or even quantify SO(2). Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recent advances in CMOS technology have allowed for the fabrication of transistors with submicronic dimensions, making possible the integration of tens of millions devices in a single chip that can be used to build very complex electronic systems. Such increase in complexity of designs has originated a need for more efficient verification tools that could incorporate more appropriate physical and computational models. Timing verification targets at determining whether the timing constraints imposed to the design may be satisfied or not. It can be performed by using circuit simulation or by timing analysis. Although simulation tends to furnish the most accurate estimates, it presents the drawback of being stimuli dependent. Hence, in order to ensure that the critical situation is taken into account, one must exercise all possible input patterns. Obviously, this is not possible to accomplish due to the high complexity of current designs. To circumvent this problem, designers must rely on timing analysis. Timing analysis is an input-independent verification approach that models each combinational block of a circuit as a direct acyclic graph, which is used to estimate the critical delay. First timing analysis tools used only the circuit topology information to estimate circuit delay, thus being referred to as topological timing analyzers. However, such method may result in too pessimistic delay estimates, since the longest paths in the graph may not be able to propagate a transition, that is, may be false. Functional timing analysis, in turn, considers not only circuit topology, but also the temporal and functional relations between circuit elements. Functional timing analysis tools may differ by three aspects: the set of sensitization conditions necessary to declare a path as sensitizable (i.e., the so-called path sensitization criterion), the number of paths simultaneously handled and the method used to determine whether sensitization conditions are satisfiable or not. Currently, the two most efficient approaches test the sensitizability of entire sets of paths at a time: one is based on automatic test pattern generation (ATPG) techniques and the other translates the timing analysis problem into a satisfiability (SAT) problem. Although timing analysis has been exhaustively studied in the last fifteen years, some specific topics have not received the required attention yet. One such topic is the applicability of functional timing analysis to circuits containing complex gates. This is the basic concern of this thesis. In addition, and as a necessary step to settle the scenario, a detailed and systematic study on functional timing analysis is also presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The xeroderma pigmentosum complementation group B (XPB) protein is involved in both DNA repair and transcription in human cells. It is a component of the transcription factor IIH (TFIIH) and is responsible for DNA helicase activity during nucleotide (nt) excision repair (NER). Its high evolutionary conservation has allowed identification of homologous proteins in different organisms, including plants. In contrast to other organisms, Arabidopsis thaliana harbors a duplication of the XPB orthologue (AtXPB1 and AtXPB2), and the proteins encoded by the duplicated genes are very similar (95% amino acid identity). Complementation assays in yeast rad25 mutant strains suggest the involvement of AtXPB2 in DNA repair, as already shown for AtXPB1, indicating that these proteins may be functionally redundant in the removal of DNA lesions in A. thaliana. Although both genes are expressed in a constitutive manner during the plant life cycle, Northern blot analyses suggest that light modulates the expression level of both XPB copies, and transcript levels increase during early stages of development. Considering the high similarity between AtXPB1 and AtXPB2 and that both of predicted proteins may act in DNA repair, it is possible that this duplication may confer more flexibility and resistance to DNA damaging agents in thale cress. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A neural model for solving nonlinear optimization problems is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The network is shown to be completely stable and globally convergent to the solutions of nonlinear optimization problems. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are presented to validate the developed methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST),program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The autonomic dysfunction stands out among the complications associated to diabetes mellitus (DM) and may be evaluated through the heart rate variability (HRV), a noninvasive tool to investigate the autonomic nervous system that provides information of health impairments and may be analyzed by using linear and nonlinear methods. Several studies have shown that HRV measured in a linear form is altered in DM. Nevertheless, a few studies investigate the nonlinear behavior of HRV. Therefore, this study aims at gathering information regarding the autonomic changes in subjects with DM identified by nonlinear analysis of HRV.Methods: For that, searches were performed on Medline, SciELO, Lilacs and Cochrane databases using the crossing between the key-words: diabetic autonomic neuropathy, autonomic nervous system, diabetes mellitus and heart rate variability. As inclusion criteria, articles published on a period from 2000 to 2010 with DM type land type II population which assessed the autonomic nervous system by nonlinear indices HRV were considered.Results: The electronic search resulted in a total of 1873 references with the exclusion of 1623 titles and abstracts and from the 250 abstracts remaining, 8 studies were selected to the final analysis that completed the inclusion criteria.Conclusions: In general, the analysis showed that the nonlinear techniques of HRV allowed detecting autonomic changes in DM. The methods of nonlinear analysis are indicated as a possible tool to be used for early diagnosis and prognosis of autonomic dysfunction in DM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Snake venom glands are a rich source of bioactive molecules such as peptides, proteins and enzymes that show important pharmacological activity leading to in local and systemic effects as pain, edema, bleeding and muscle necrosis. Most studies on pharmacologically active peptides and proteins from snake venoms have been concerned with isolation and structure elucidation through methods of classical biochemistry. As an attempt to examine the transcripts expressed in the venom gland of Bothrops jararacussu and to unveil the toxicological and pharmacological potential of its products at the molecular level, we generated 549 expressed sequence tags (ESTs) from a directional cDNA library. Sequences obtained from single-pass sequencing of randomly selected cDNA clones could be identified by similarities searches on existing databases, resulting in 197 sequences with significant similarity to phospholipase A(2) (PLA(2)), of which 83.2% were Lys49-PLA(2) homologs (BOJU-1), 0.1% were basic Asp49-PLA(2)s (BOJU-II) and 0.6% were acidic Asp49-PLA(2)s (BOJU-III). Adjoining this very abundant class of proteins we found 88 transcripts codifying for putative sequences of metalloproteases, which after clustering and assembling resulted in three full-length sequences: BOJUMET-I, BOJUMET-II and BOJUMET-III; as well as 25 transcripts related to C-type lectin like protein including a full-length cDNA of a putative galactose binding C-type lectin and a cluster of eight serine-proteases transcripts including a full-length cDNA of a putative serine protease. Among the full-length sequenced clones we identified a nerve growth factor (Bj-NGF) with 92% identity with a human NGF (NGHUBM) and an acidic phospholipase A2 (BthA-I-PLA(2)) displaying 85-93% identity with other snake venom toxins. Genetic distance among PLA(2)s from Bothrops species were evaluated by phylogenetic analysis. Furthermore, analysis of full-length putative Lys49-PLA(2) through molecular modeling showed conserved structural domains, allowing the characterization of those proteins as group II PLA(2)s. The constructed cDNA library provides molecular clones harboring sequences that can be used to probe directly the genetic material from gland venom of other snake species. Expression of complete cDNAs or their modified derivatives will be useful for elucidation of the structure-function relationships of these toxins and peptides of biotechnological interest. (C) 2004 Elsevier SAS. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Considering the static solutions of the D-dimensional nonlinear Schrodinger equation with trap and attractive two-body interactions, the existence of stable solutions is limited to a maximum critical number of particles, when D greater than or equal to 2. In case D = 2, we compare the variational approach with the exact numerical calculations. We show that, the addition of a positive three-body interaction allows stable solutions beyond the critical number. In this case, we also introduce a dynamical analysis of the conditions for the collapse. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.