914 resultados para New materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propellane alkaloids comprise a large class of natural products that possess varying degrees of structural complexity and biological activity. The earliest of these to be isolated was acutumine, a chlorinated alkaloid that has been shown to exhibit selective T-cell cytotoxicity and antiamnesic properties. Alternatively, the hasubanan family of natural products has garnered considerable attention from the synthetic community in part due to its structural similarities to morphine. While these alkaloids have been the subject of numerous synthetic studies over the last forty years, very few enantioselective total syntheses have been reported to date.

As part of a research program directed towards the synthesis of various alkaloid natural products, we have developed a unified strategy for the preparation of the hasubanan and acutumine alkaloids. Specifically, a highly diastereoselective 1,2-addition of organometallic reagents to benzoquinone-derived tert-butanesulfinimines was established, which provides access to enantioenriched 4-aminocyclohexadienone products. This methodology enabled the enantioselective construction of functionalized dihydroindolones, which were found to undergo intramolecular Friedel-Crafts conjugate additions to furnish the propellane cores of several hasubanan alkaloids. As a result of these studies, the first enantioselective total syntheses of 8-demethoxyrunanine and cepharatines A, C, and D were accomplished in 9-11 steps from commercially available starting materials.

More recent efforts have focused on applying the sulfinimine methodology to the synthesis of a more structurally complex propellane alkaloid, acutumine. Extensive studies have determined that a properly functionalized dihydroindolone undergoes a photochemical [2+2] cycloaddition followed by a lactone fragmentation/Dieckmann cyclization to establish the carbocyclic framework of the natural product. The preparation of more appropriately oxidized propellane intermediates is currently under investigation, and is anticipated to facilitate our synthetic endeavors toward acutumine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design, synthesis and magnetic characterization of thiophene-based models for the polaronic ferromagnet are described. Synthetic strategies employing Wittig and Suzuki coupling were employed to produce polymers with extended π-systems. Oxidative doping using AsF_5 or I_2 produces radical cations (polarons) that are stable at room temperature. Magnetic characterization of the doped polymers, using SQUID-based magnetometry, indicates that in several instances ferromagnetic coupling of polarons occurs along the polymer chain. An investigation of the influence of polaron stability and delocalization on the magnitude of ferromagnetic coupling is pursued. A lower limit for mild, solution phase I_2 doping is established. A comparison of the variable temperature data of various polymers reveals that deleterious antiferromagnetic interactions are relatively insensitive to spin concentration, doping protocols or spin state. Comparison of the various polymers reveals useful design principles and suggests new directions for the development of magnetic organic materials. Novel strategies for solubilizing neutral polymeric materials in polar solvents are investigated.

The incorporation of stable bipyridinium spin-containing units into a polymeric high-spin array is explored. Preliminary results suggest that substituted diquat derivatives may serve as stable spin-containing units for the polaronic ferromagnet and are amenable to electrochemical doping. Synthetic efforts to prepare high-spin polymeric materials using viologens as a spin source have been unsuccessful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of a thermoelectric material is judged by the size of its temperature de- pendent thermoeletric-figure-of-merit (zT ). Superionic materials, particularly Zn4Sb3 and Cu2Se, are of current interest for the high zT and low thermal conductivity of their disordered, superionic phase. In this work it is reported that the super-ionic materials Ag2Se, Cu2Se and Cu1.97Ag0.03Se show enhanced zT in their ordered, normal ion-conducting phases. The zT of Ag2Se is increased by 30% in its ordered phase as compared to its disordered phase, as measured just below and above its first order phase transition. The zT ’s of Cu2Se and Cu1.97Ag0.03Se both increase by more than 100% over a 30 K temperatures range just below their super-ionic phase transitions. The peak zT of Cu2Se is 0.7 at 406 K and of Cu1.97Ag0.03Se is 1.0 at 400 K. In all three materials these enhancements are due to anomalous increases in their Seebeck coefficients, beyond that predicted by carrier concentration measurements and band structure modeling. As the Seebeck coefficient is the entropy transported per carrier, this suggests that there is an additional quantity of entropy co-transported with charge carriers. Such co-transport has been previously observed via co-transport of vibrational entropy in bipolaron conductors and spin-state entropy in NaxCo2O4. The correlation of the temperature profile of the increases in each material with the nature of their phase transitions indicates that the entropy is associated with the thermodynamcis of ion-ordering. This suggests a new mechanism by which high thermoelectric performance may be understood and engineered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central theme of this thesis is the use of imidazolium-based organic structure directing agents (OSDAs) in microporous materials synthesis. Imidazoliums are advantageous OSDAs as they are relatively inexpensive and simple to prepare, show robust stability under microporous material synthesis conditions, have led to a wide range of products, and have many permutations in structure that can be explored. The work I present involves the use of mono-, di-, and triquaternary imidazolium-based OSDAs in a wide variety of microporous material syntheses. Much of this work was motivated by successful computational predictions (Chapter 2) that led me to continue to explore these types of OSDAs. Some of the important discoveries with these OSDAs include the following: 1) Experimental evaluation and confirmation of a computational method that predicted a new OSDA for pure-silica STW, a desired framework containing helical pores that was previously very difficult to synthesize. 2) Discovery of a number of new imidazolium OSDAs to synthesize zeolite RTH, a zeolite desired for both the methanol-to-olefins reaction as well as NOX reduction in exhaust gases. This discovery enables the use of RTH for many additional investigations as the previous OSDA used to make this framework was difficult to synthesize, such that no large scale preparations would be practical. 3) The synthesis of pure-silica RTH by topotactic condensation from a layered precursor (denoted CIT-10), that can also be pillared to make a new framework material with an expanded pore system, denoted CIT-11, that can be calcined to form a new microporous material, denoted CIT-12. CIT-10 is also interesting since it is the first layered material to contain 8 membered rings through the layers, making it potentially useful in separations if delamination methods can be developed. 4) The synthesis of a new microporous material, denoted CIT-7 (framework code CSV) that contains a 2-dimensional system of 8 and 10 membered rings with a large cage at channel intersections. This material is especially important since it can be synthesized as a pure-silica framework under low-water, fluoride-mediated synthesis conditions, and as an aluminosilicate material under hydroxide mediated conditions. 5) The synthesis of high-silica heulandite (HEU) by topotactic condensation as well as direct synthesis, demonstrating new, more hydrothermally stable compositions of a previously known framework. 6) The synthesis of germanosilicate and aluminophosphate LTA using a triquaternary OSDA. All of these materials show the diverse range of products that can be formed from OSDAs that can be prepared by straightforward syntheses and have made many of these materials accessible for the first time under facile zeolite synthesis conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of benzothiazole-containing fluorene molecules have been designed and their one- and two-photon absorption properties have been investigated theoretically by using the ZINDO method. The effects of electron-excessive/deficient heterocyclic bridges as auxiliary donors (auxD)/acceptors (auxA) on TPA cross-sections were studied. The results show that the molecules with D-pi-auxA-A, D-aux D-pi-A, or D-auxD-pi-auxA-A structure types have large TPA cross-section, which can be a valuable strategy in the design of two-photon absorption materials. Also, a linear relationship between the first hyperpolarizability and the TPA cross-section is observed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent glass ceramics have been obtained by nucleation and growth of Y2Te6O15 or Er2Te5O13 cubic phase in a new Er3+-doped oxyfluoride tellurite glass. Effect of beat treatment on absorption spectra, luminescence and up-conversion properties in the oxyfluoride tellurite glass has been investigated. With heat treatment the ultraviolet absorption edge red shifted evidently for the oxyfluoride telluride glass. The near infrared emission that corresponds to Er3+:I-4(13/2)-> I-4(15/2) can be significantly enhanced after heat treatment. Under 980 nm LD pumping, red and green up-conversion intensity of Er3+ in the glass ceramic can be observed much stronger than that in the base glass. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal stability, Raman spectrum and upconversion properties of Tm^(3+)/Yb^(3+) co-doped new oxyfluoride tellurite glass are investigated. The results show that Tm^(3+)/Yb^(3+) co-doped oxyfluoride tellurite glass possesses good thermal stability, lower phonon energy, and intense upconversion blue luminescence. Under 980-nm laser diode (LD) excitation, the intense blue (475 nm) emission and weak red (649 nm) emission corresponding to the 1G4 -> 3H6 and 1G4 -> 3F4 transitions of Tm^(3+) ions respectively, were simultaneously observed at room temperature. The possible upconversion mechanisms are evaluated. The intense blue upconversion luminescence of Tm^(3+)/Yb^(3+) co-doped oxyfluoride tellurite glass can be used as potential host material for the development of blue upconversion optical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new Er(3+)/Yb(3+) co-doped phosphate glass has been prepared, which exhibits good chemical durability and spectralproperties. Planar graded index waveguides have been fabricated in the glass by (Ag+)-Na(+) ion exchange in a mixed melt of silver nitrate and potassium nitrate. Ion exchange is carried out by varying the process parameters such as temperature, diffusion time, and molten salt compositions. The diffusion parameters, diffusion coefficients, and activation energy are determined by the guidelines of fabricated waveguides, which are determined by the input prism coupling technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New broadband near infrared luminescence covering the whole work windows (1260-1625 nm) of the current wavelength division multiplexing (WDM) system was found from bismuth-activated M2O-Al2O3-SiO2 (M = Li, Na) and Li2O-Ta2O5-SiO2 glasses at room temperature in the case of 808 nm-laser excitation. But the near infrared luminescence mechanism of the bismuth-activated glasses is not well understood up to now. The figure-of-merits of bandwidth and gain of the glasses are better than those of Er3+-doped silicate glasses and Ti3+ doped sapphire, implying they are the promising gain-medium candidates for the broadband amplifiers and the widely tunable laser sources. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tin oxide doped beta-Ga2O3 single crystals are recognized as transparent conductive oxides (TCOs) materials. They have a larger band gap (4.8 eV) than any other TCOs, thus can be transparent in UV region. This property shows that they have the potential to make the optoelectronic device used in even shorter wavelength than usual TCOs. beta-Ga2O3 single crystals doped with different Sn4+ concentrations were grown by the floating zone technique. Their optical properties and electrical conductivities were systematically studied. It has been found that their conductivities and optical properties were influenced by the Sn4+ concentrations and annealing. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is focused on the measurement of workers exposure to nano-TiO2 in the life cycle steps of depollutant mortars. It has been done in the framework of the SCAFFOLD project, which aims at the management of potential risks arising from the use of manufactured nanomaterials in construction. Main findings can be summarized as follows: (1) The occupational exposure to nano-TiO2 is below 0.3 mg/m(3) for all measured scenarios. The highest concentrations were measured during the cleaning task (in the nano-TiO2 manufacturing process) and during the application (spraying) of depollutant coatings on a wall. (2) It was found a high release of particles above the background in several tasks as expected due to the nature of the activities performed. The maximum concentration was measured during drilling and during adding powder materials (mean total particle concentration up to 5.591E+04 particles/cm(3) and 5.69E+04 particles/cm(3)). However, considering data on total particle concentration released, no striking differences have been observed when tasks have been performed using conventional materials in the sector (control) and when using materials doped with nano-objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to inadequacies of previous underwater towing techniques and the special needs of a recent underwater survey, a modified mania-board technique was developed. With this new technique, the diver holds on to the manta-board with one arm; consequently, the board is referred to as a single-armed manta-board (sam-board). The sam-board proved inexpensive and highly maneuverable, allowing the divers to freely collect samples or record information. Through some experimenting with the board and changing some of the variables, such as rope lengths, towing speeds, etc., a highly efficient towing method can be achieved. Preplanning and strict diving safety procedures must, however, be implemented to assure efficiency. This paper presents the materials, guidelines for board construction, equipment, and preplanning and diving safety procedures necessary for the sam-board towing operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although menhaden, Brevoortia spp., represent 23.5 percent of United States commercial fishery landings, they represent only about 2.6 percent of the total landed value of fishery products. New food products and markets are needed to increase the economic value of the menhaden resource. This paper describes investigations of menhaden as a raw material for both traditional and new forms of food products. Canned menhaden is a logical food product, but the production of a menhaden surimi with good functionality has recently been demonstrated. The U.S. Food and Drug Administration has placed partially hydrogenated menhaden oil on the GRAS list of ingredients for food products, but a decision on the status of nutritionally beneficial refined menhaden oil is not yet available. Refined menhaden oil is currently the raw material for biomedical test materials being used in research approved by the National Institutes of Health to determine the health benefits of fish oils and omega-3 fatty acids. The test materials are being produced, with strict quality controls, at the NMFS Charleston Laboratory.