912 resultados para Neural algorithm
Resumo:
A feedforward network composed of units of teams of parameterized learning automata is considered as a model of a reinforcement teaming system. The internal state vector of each learning automaton is updated using an algorithm consisting of a gradient following term and a random perturbation term. It is shown that the algorithm weakly converges to a solution of the Langevin equation implying that the algorithm globally maximizes an appropriate function. The algorithm is decentralized, and the units do not have any information exchange during updating. Simulation results on common payoff games and pattern recognition problems show that reasonable rates of convergence can be obtained.
Resumo:
The basic concepts and techniques involved in the development and analysis of mathematical models for individual neurons and networks of neurons are reviewed. Some of the interesting results obtained from recent work in this field are described. The current status of research in this field in India is discussed
Resumo:
The problem of spurious patterns in neural associative memory models is discussed, Some suggestions to solve this problem from the literature are reviewed and their inadequacies are pointed out, A solution based on the notion of neural self-interaction with a suitably chosen magnitude is presented for the Hebb learning rule. For an optimal learning rule based on linear programming, asymmetric dilution of synaptic connections is presented as another solution to the problem of spurious patterns, With varying percentages of asymmetric dilution it is demonstrated numerically that this optimal learning rule leads to near total suppression of spurious patterns. For practical usage of neural associative memory networks a combination of the two solutions with the optimal learning rule is recommended to be the best proposition.
Resumo:
Although the recently proposed single-implicit-equation-based input voltage equations (IVEs) for the independent double-gate (IDG) MOSFET promise faster computation time than the earlier proposed coupled-equations-based IVEs, it is not clear how those equations could be solved inside a circuit simulator as the conventional Newton-Raphson (NR)-based root finding method will not always converge due to the presence of discontinuity at the G-zero point (GZP) and nonremovable singularities in the trigonometric IVE. In this paper, we propose a unique algorithm to solve those IVEs, which combines the Ridders algorithm with the NR-based technique in order to provide assured convergence for any bias conditions. Studying the IDG MOSFET operation carefully, we apply an optimized initial guess to the NR component and a minimized solution space to the Ridders component in order to achieve rapid convergence, which is very important for circuit simulation. To reduce the computation budget further, we propose a new closed-form solution of the IVEs in the near vicinity of the GZP. The proposed algorithm is tested with different device parameters in the extended range of bias conditions and successfully implemented in a commercial circuit simulator through its Verilog-A interface.
Resumo:
The actor-critic algorithm of Barto and others for simulation-based optimization of Markov decision processes is cast as a two time Scale stochastic approximation. Convergence analysis, approximation issues and an example are studied.
Resumo:
In recent years, parallel computers have been attracting attention for simulating artificial neural networks (ANN). This is due to the inherent parallelism in ANN. This work is aimed at studying ways of parallelizing adaptive resonance theory (ART), a popular neural network algorithm. The core computations of ART are separated and different strategies of parallelizing ART are discussed. We present mapping strategies for ART 2-A neural network onto ring and mesh architectures. The required parallel architecture is simulated using a parallel architectural simulator, PROTEUS and parallel programs are written using a superset of C for the algorithms presented. A simulation-based scalability study of the algorithm-architecture match is carried out. The various overheads are identified in order to suggest ways of improving the performance. Our main objective is to find out the performance of the ART2-A network on different parallel architectures. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Perfect or even mediocre weather predictions over a long period are almost impossible because of the ultimate growth of a small initial error into a significant one. Even though the sensitivity of initial conditions limits the predictability in chaotic systems, an ensemble of prediction from different possible initial conditions and also a prediction algorithm capable of resolving the fine structure of the chaotic attractor can reduce the prediction uncertainty to some extent. All of the traditional chaotic prediction methods in hydrology are based on single optimum initial condition local models which can model the sudden divergence of the trajectories with different local functions. Conceptually, global models are ineffective in modeling the highly unstable structure of the chaotic attractor. This paper focuses on an ensemble prediction approach by reconstructing the phase space using different combinations of chaotic parameters, i.e., embedding dimension and delay time to quantify the uncertainty in initial conditions. The ensemble approach is implemented through a local learning wavelet network model with a global feed-forward neural network structure for the phase space prediction of chaotic streamflow series. Quantification of uncertainties in future predictions are done by creating an ensemble of predictions with wavelet network using a range of plausible embedding dimensions and delay times. The ensemble approach is proved to be 50% more efficient than the single prediction for both local approximation and wavelet network approaches. The wavelet network approach has proved to be 30%-50% more superior to the local approximation approach. Compared to the traditional local approximation approach with single initial condition, the total predictive uncertainty in the streamflow is reduced when modeled with ensemble wavelet networks for different lead times. Localization property of wavelets, utilizing different dilation and translation parameters, helps in capturing most of the statistical properties of the observed data. The need for taking into account all plausible initial conditions and also bringing together the characteristics of both local and global approaches to model the unstable yet ordered chaotic attractor of a hydrologic series is clearly demonstrated.
Resumo:
A neural network has been used to predict the flow intermittency from velocity signals in the transition zone in a boundary layer. Unlike many of the available intermittency detection methods requiring a proper threshold choice in order to distinguish between the turbulent and non-turbulent parts of a signal, a trained neural network does not involve any threshold decision. The intermittency prediction based on the neural network has been found to be very satisfactory.
Resumo:
In this paper, we propose a new fault-tolerant distributed deadlock detection algorithm which can handle loss of any resource release message. It is based on a token-based distributed mutual exclusion algorithm. We have evaluated and compared the performance of the proposed algorithm with two other algorithms which belong to two different classes, using simulation studies. The proposed algorithm is found to be efficient in terms of average number of messages per wait and average deadlock duration compared to the other two algorithms in all situations, and has comparable or better performance in terms of other parameters.
Resumo:
In this paper, we propose a new token-based distributed algorithm for total order atomic broadcast. We have shown that the proposed algorithm requires lesser number of messages compared to the algorithm where broadcast servers use unicasting to send messages to other broadcast servers. The traditional method of broadcasting requires 3(N - 1) messages to broadcast an application message, where N is the number of broadcast servers present in the system. In this algorithm, the maximum number of token messages required to broadcast an application message is 2N. For a heavily loaded system, the average number of token messages required to broadcast an application message reduces to 2, which is a substantial improvement over the traditional broadcasting approach.
Resumo:
In this paper we consider the problem of learning an n × n kernel matrix from m(1) similarity matrices under general convex loss. Past research have extensively studied the m = 1 case and have derived several algorithms which require sophisticated techniques like ACCP, SOCP, etc. The existing algorithms do not apply if one uses arbitrary losses and often can not handle m > 1 case. We present several provably convergent iterative algorithms, where each iteration requires either an SVM or a Multiple Kernel Learning (MKL) solver for m > 1 case. One of the major contributions of the paper is to extend the well knownMirror Descent(MD) framework to handle Cartesian product of psd matrices. This novel extension leads to an algorithm, called EMKL, which solves the problem in O(m2 log n 2) iterations; in each iteration one solves an MKL involving m kernels and m eigen-decomposition of n × n matrices. By suitably defining a restriction on the objective function, a faster version of EMKL is proposed, called REKL,which avoids the eigen-decomposition. An alternative to both EMKL and REKL is also suggested which requires only an SVMsolver. Experimental results on real world protein data set involving several similarity matrices illustrate the efficacy of the proposed algorithms.
Resumo:
Neural network models of associative memory exhibit a large number of spurious attractors of the network dynamics which are not correlated with any memory state. These spurious attractors, analogous to "glassy" local minima of the energy or free energy of a system of particles, degrade the performance of the network by trapping trajectories starting from states that are not close to one of the memory states. Different methods for reducing the adverse effects of spurious attractors are examined with emphasis on the role of synaptic asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An efficient strategy for identification of delamination in composite beams and connected structures is presented. A spectral finite-element model consisting of a damaged spectral element is used for model-based prediction of the damaged structural response in the frequency domain. A genetic algorithm (GA) specially tailored for damage identification is derived and is integrated with finite-element code for automation. For best application of the GA, sensitivities of various objective functions with respect to delamination parameters are studied and important conclusions are presented. Model-based simulations of increasing complexity illustrate some of the attractive features of the strategy in terms of accuracy as well as computational cost. This shows the possibility of using such strategies for the development of smart structural health monitoring softwares and systems.
Resumo:
The decision-making process for machine-tool selection and operation allocation in a flexible manufacturing system (FMS) usually involves multiple conflicting objectives. Thus, a fuzzy goal-programming model can be effectively applied to this decision problem. The paper addresses application of a fuzzy goal-programming concept to model the problem of machine-tool selection and operation allocation with explicit considerations given to objectives of minimizing the total cost of machining operation, material handling and set-up. The constraints pertaining to the capacity of machines, tool magazine and tool life are included in the model. A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy goal-programming model. An illustrative example is provided and some results of computational experiments are reported.
Resumo:
In this article we consider a finite queue with its arrivals controlled by the random early detection algorithm. This is one of the most prominent congestion avoidance schemes in the Internet routers. The aggregate arrival stream from the population of transmission control protocol sources is locally considered stationary renewal or Markov modulated Poisson process with general packet length distribution. We study the exact dynamics of this queue and provide the stability and the rates of convergence to the stationary distribution and obtain the packet loss probability and the waiting time distribution. Then we extend these results to a two traffic class case with each arrival stream renewal. However, computing the performance indices for this system becomes computationally prohibitive. Thus, in the latter half of the article, we approximate the dynamics of the average queue length process asymptotically via an ordinary differential equation. We estimate the error term via a diffusion approximation. We use these results to obtain approximate transient and stationary performance of the system. Finally, we provide some computational examples to show the accuracy of these approximations.