844 resultados para Network Architectures and Security


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study presents the results and recommendations deriving from the application of two supply chain management analysis models as proposed by the Supply Chain Council (SCOR, version 10.0) and by Lambert (1997, Framework for Supply Chain Management) on the logistics of cash transfers in Brazil. Cash transfers consist of the transportation of notes to and from each node of the complex network formed by the bank branches, ATMs, armored transportation providers, the government custodian, Brazilian Central Bank and financial institutions. Although the logistic to sustain these operations is so wide-ranged (country-size), complex and subject to a lot of financial regulations and security procedures, it has been detected that it was probably not fully integrated. Through the use of a primary and a secondary data research and analysis, using the above mentioned models, the study ends up with propositions to strongly improve the operations efficiency

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SCHEFFZUK, C. , KUKUSHKA, V. , VYSSOTSKI, A. L. , DRAGUHN, A. , TORT, A. B. L. , BRANKACK, J. . Global slowing of network oscillations in mouse neocortex by diazepam. Neuropharmacology , v. 65, p. 123-133, 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attacks to devices connected to networks are one of the main problems related to the confidentiality of sensitive data and the correct functioning of computer systems. In spite of the availability of tools and procedures that harden or prevent the occurrence of security incidents, network devices are successfully attacked using strategies applied in previous events. The lack of knowledge about scenarios in which these attacks occurred effectively contributes to the success of new attacks. The development of a tool that makes this kind of information available is, therefore, of great relevance. This work presents a support system to the management of corporate security for the storage, retrieval and help in constructing attack scenarios and related information. If an incident occurs in a corporation, an expert must access the system to store the specific attack scenario. This scenario, made available through controlled access, must be analyzed so that effective decisions or actions can be taken for similar cases. Besides the strategy used by the attacker, attack scenarios also exacerbate vulnerabilities in devices. The access to this kind of information contributes to an increased security level of a corporation's network devices and a decreased response time to occurring incidents

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the current major concerns in engineering is the development of aircrafts that have low power consumption and high performance. So, airfoils that have a high value of Lift Coefficient and a low value for the Drag Coefficient, generating a High-Efficiency airfoil are studied and designed. When the value of the Efficiency increases, the aircraft s fuel consumption decreases, thus improving its performance. Therefore, this work aims to develop a tool for designing of airfoils from desired characteristics, as Lift and Drag coefficients and the maximum Efficiency, using an algorithm based on an Artificial Neural Network (ANN). For this, it was initially collected an aerodynamic characteristics database, with a total of 300 airfoils, from the software XFoil. Then, through the software MATLAB, several network architectures were trained, between modular and hierarchical, using the Back-propagation algorithm and the Momentum rule. For data analysis, was used the technique of cross- validation, evaluating the network that has the lowest value of Root Mean Square (RMS). In this case, the best result was obtained for a hierarchical architecture with two modules and one layer of hidden neurons. The airfoils developed for that network, in the regions of lower RMS, were compared with the same airfoils imported into the software XFoil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the inventor is often the driver of an invention in the early stages, he/she needs to move between different social networks for knowledge in order to create and capture value. The main objective of this research is to propose a literature-based framework based on innovation network theory and complemented with C-K theory, in order to analyze the invention/innovation process of inventors and the product concepts in a packaging industry context. Empirical input from three case studies of packaging inventions and their inventors is used to elaborate the suggested framework.The article identifies important gaps in the literature of innovation networks. This is addressed through a theoretical framework based on network theories, complemented with C-K theory for the product design level. The strength-of-ties dimension of the theoretical framework suggests, in agreement with the mainstream literature and the cases presented, that weak ties are required to access the knowledge related to exploration networks and strong ties are required to utilize the knowledge in the exploitation network. The transformation network is an intermediate step acting as a bridge where entrepreneurs can find required knowledge. The transformation network is also an intermediate step where entrepreneurs find financing and companies interested in commercializing inventions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a method for security control of electric power systems effected by generation reallocation, determined by sensitivity analysis and optimisation. The model is developed considering the dynamic aspects of the network (transient stability). Security control methodology is developed using sensitivity analysis of the security margin in relation to the mechanical power of synchronous machines in the system. The power reallocated to each machine is determined by means of linear programming. To illustrate the proposed methodology, an example is presented which considers a multimachine system composed of 10 synchronous machines, 45 buses, and 72 transmission lines, based on the configuration of a southern Brazilian system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is based on the development and experimental analysis of a DCM Boost interleaved converter suitable for application in traction systems of electrical vehicles pulled by electrical motors (Trolleybus), which are powered by urban DC or AC distribution networks. This front-end structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The architecture of proposed converter is composed by five boost power cells in interleaving connection, operating in discontinuous conduction mode. Furthermore, the converter can operate as AC-DC converter, or as DC-DC converter providing the proper DC output voltage range required by DC or AC adjustable speed drivers. Therefore, when supplied by single-phase AC distribution networks, and operating as AC-DC converter, it is capable to provide high power factor, reduced harmonic distortion in the input current, complying with the restrictions imposed by the IEC 61000-3-4 standards. The digital controller has been implemented using a low cost FPGA and developed totally using a hardware description language VHDL and fixed point arithmetic. Thus, two control strategies are evaluated considering the compliance with input current restrictions imposed by IEC 61000-3-4 standards, the regular PWM modulation and a current correction PWM modulation. In order to verify the feasibility and performance of the proposed system, experimental results from a 15 kW low power scale prototype are presented, operating in DC and AC conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes an application of a multilayer perceptron neural network technique to correct dome emission effects on longwave atmospheric radiation measurements carried out using an Eppley Precision Infrared Radiometer (PIR) pyrgeometer. It is shown that approximately 7-month-long measurements of dome and case temperatures and meteorological variables available in regular surface stations (global solar radiation, air temperature, and air relative humidity) are enough to train the neural network algorithm and correct the observed longwave radiation for dome temperature effects in surface stations with climates similar to that of the city of São Paulo, Brazil. The network was trained using data from 15 October 2003 to 7 January 2004 and verified using data, not present during the network-training period, from 8 January to 30 April 2004. The longwave radiation values generated by the neural network technique were very similar to the values obtained by Fairall et al., assumed here as the reference approach to correct dome emission effects in PIR pyrgeometers. Compared to the empirical approach the neural network technique is less limited to sensor type and time of day (allows nighttime corrections).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach to integrate an artificial intelligence (AI) technique, concretely rule-based processing, into mobile agents. In particular, it focuses on the aspects of designing and implementing an appropriate inference engine of small size to reduce migration costs. The main goal is combine two lines of agent research, First, the engineering oriented approach on mobile agent architectures, and, second, the AI related approach on inference engines driven by rules expressed in a restricted subset of first-order predicate logic (FOPL). In addition to size reduction, the main functions of this type of engine were isolated, generalized and implemented as dynamic components, making possible not only their migration with the agent, but also their dynamic migration and loading on demand. A set of classes for representing and exchanging knowledge between rule-based systems was also proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for optimal transmission network expansion planning is presented. The transmission network is modelled as a transportation network. The problem is solved using hierarchical Benders decomposition in which the problem is decomposed into master and slave subproblems. The master subproblem models the investment decisions and is solved using a branch-and-bound algorithm. The slave subproblem models the network operation and is solved using a specialised linear program. Several alternative implementations of the branch-and-bound algorithm have been rested. Special characteristics of the transmission expansion problem have been taken into consideration in these implementations. The methods have been tested on various test systems available in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodiversity is organised into complex ecological networks of interacting species in local ecosystems, but our knowledge about the effects of habitat fragmentation on such systems remains limited. We consider the effects of this key driver of both local and global change on both mutualistic and antagonistic systems at different levels of biological organisation and spatiotemporal scales.There is a complex interplay of patterns and processes related to the variation and influence of spatial, temporal and biotic drivers in ecological networks. Species traits (e.g. body size, dispersal ability) play an important role in determining how networks respond to fragment size and isolation, edge shape and permeability, and the quality of the surrounding landscape matrix. Furthermore, the perception of spatial scale (e.g. environmental grain) and temporal effects (time lags, extinction debts) can differ markedly among species, network modules and trophic levels, highlighting the need to develop a more integrated perspective that considers not just nodes, but the structural role and strength of species interactions (e.g. as hubs, spatial couplers and determinants of connectance, nestedness and modularity) in response to habitat fragmentation.Many challenges remain for improving our understanding: the likely importance of specialisation, functional redundancy and trait matching has been largely overlooked. The potentially critical effects of apex consumers, abundant species and supergeneralists on network changes and evolutionary dynamics also need to be addressed in future research. Ultimately, spatial and ecological networks need to be combined to explore the effects of dispersal, colonisation, extinction and habitat fragmentation on network structure and coevolutionary dynamics. Finally, we need to embed network approaches more explicitly within applied ecology in general, because they offer great potential for improving on the current species-based or habitat-centric approaches to our management and conservation of biodiversity in the face of environmental change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major problems facing Blast Furnaces is the occurrence of cracks in taphole mud, as the underlying causes are not easily identifiable. The absence of this knowledge makes it difficult the use of conventional techniques for predictability and mitigation. This paper will address the application of Probabilistic Neural Network using the Matlab software as a means to detect and control such cracks. The most relevant BF operational variables were picked through the statistic tool "Principal Component Analysis - PCA." Based upon the selection of these variables a probabilistic neural network was built. A set of BF operational data, consisting of 30 controlling variables, was divided into 2 groups, one of which for network training, and the other one to validate the neural network. The neural network got 98% of the cases right. The results show the effectiveness of this tool for crack prediction in relation to clay intrinsic properties and as a result of the fluctuation in operational variables.