924 resultados para Net rate of heat release
Resumo:
Changes in texture, microstructure, colour and protein solubility of Thai indigenous and broiler chicken Pectoralis muscle stripes cooked at different temperatures were evaluated. The change in shear value of both chicken muscles was a significant increase from 50 to 80 degrees C but no change from 80 to 100 degrees C. A significant decrease in fibre diameter was obtained in samples heated to an internal temperature of 60 degrees C and the greatest shrinkage of sarcomeres was observed with internal temperatures of 70-100 and 80-100 C for broiler and indigenous chicken muscles, respectively (P < 0.05). Cooking losses of indigenous chicken muscles increased markedly in the temperature range 80-100 C and were significantly higher than those of the broiler (P < 0.001). With increasing temperature, from 50 to 70 degrees C, cooked chicken muscle became lighter and yellower. Relationships between changes in sarcomere length, fibre diameter, shear value, cooking loss and solubility of muscle proteins were evaluated. It was found that the solubility of muscle protein was very highly correlated with the texture of cooked broiler muscle while sarcomere length changes and collagen solubility were important factors influencing the cooking loss and texture of cooked indigenous chicken muscle. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Gluten was extracted from flours of several different wheat varieties of varying baking quality. Creep compliance was measured at room temperature and tan 6 was measured over a range of temperatures from 25 to 95 degrees C. The extracted glutens were heat-treated for 20 min at 25, 40, 50, 60, 70 and 90 degrees C in a water bath, freeze-dried and ground to a fine powder. Tests were carried out for extractability in sodium dodecyl sulphate, free sulphydryl (SH) groups using Ellman's method, surface hydrophobicity and molecular weight (MW) distribution (MWD) using field-flow fractionation and multi-angle laser light scattering. With increasing temperature, the glutens showed a decrease in extractability, with the most rapid decreases occurring between 70 and 90 degrees C, a major transition in tan 6 at around 60 degrees C and a minor transition at 40 degrees C for most varieties, a decrease in free SH groups and surface hydrophobicity and a shift in the MWD towards higher MW. The poor bread-making variety Riband showed the highest values of tan delta and Newtonian compliance, the lowest content of free SH groups and the largest increase of HMW/LMW with increasing temperature. No significant correlations with baking volume were found between any of the measured parameters. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Flours from wheat varieties of differing bread-making quality were fractionated using a sequential salt precipitation technique. The gluten fractions in the different varieties varied in the proportion of HMW, LMW glutenins and gliadins. Their rheological behaviour was examined using constant strain (2%) small deformation oscillation tests over frequencies ranging from 0.005 to 10 Hz, before and after heating at 90 degrees C. The fractions containing a higher proportion of HMW glutenins were associated with a predominantly elastic character, whereas fractions containing mostly gliadins exhibited a viscous-like behaviour. The frequency dependent rheological behaviour of fractions containing HMW proteins was less susceptible to heat, and their elastic character was maintained after heating, whereas the rheology of intermediate fractions and fractions containing mostly gliadins was more susceptible to heating, indicating a rapid change from viscous to elastic behaviour after heating. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Sixteen early to mid lactation Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-day experimental periods and a 4 5 2 factorial arrangement of treatments to evaluate the effects of heat-treated rapeseed expeller and solvent-extracted soya-bean meal protein supplements on animal performance. Dietary treatments consisted of grass silage offered ad libitum supplemented with a fixed amount of a cereal based concentrate (10 kg/day on a fresh weight basis) containing 120, 150, 180 or 210 g crude protein (CP) per kg dry matter (DM). Concentrate CP content was manipulated by replacement of basal ingredients (g/kg) with either rapeseed expeller (R; 120, 240 and 360) or soya-bean meal (S; 80, 160 and 240). Increases in concentrate CP stimulated linear increases (P < 0.05) in silage intake (mean 22.5 and 23.8 g DM per g/kg increase in dietary CP content, for R and S, respectively) and milk production. Concentrate inclusion of rapeseed expeller elicited higher (P < 0.01) milk yield and milk protein output responses (mean 108 and 3.71 g/day per g/kg DM increase in dietary CP content) than soya-bean meal (corresponding values 62 and 2.57). Improvements in the apparent utilization of dietary nitrogen for milk protein synthesis (mean 0.282 and 0.274, for R and S, respectively) were associated with higher (P < 0.05) plasma concentrations of histidine, branched-chain, essential and total amino acids (35, 482, 902 and 2240 and 26, 410, 800 and 2119 mu mol/l, respectively) and lower (P < 0.01) concentrations of urea (corresponding values 4.11 and 4.52 mmol/l). Heat-treated rapeseed expeller proved to be a more effective protein supplement than solvent-extracted soya-bean meal for cows offered grass silage-based diets.
Interaction of heat-moisture conditions and physical properties in oat processing: II. Flake quality
Resumo:
Product quality is an important determinant of consumer acceptance. Consistent oat flake properties are thus necessary in the mill as well as in the marketplace. The effects of kilning and tempering conditions (30, 60 or 90 min at 80, 95 or 110 degrees C) on flake peroxidase activity, size, thickness, strength and water absorption were therefore determined. After kilning, some peroxidase activity remained but steaming and tempering effectively destroyed the activity of these enzymes. Thus the supposed protective effect of kilning or groat durability was not confirmed. Kilning resulted in an increase in flake specific weight, but no other significant effect on flake quality was observed. Tempering time and temperature interacted significantly to produce complex effects on flake specific weight, thickness and water absorption. Flake thickness and specific weight were significantly correlated (r = 0.808, n = 54). Longer tempering times resulted in an increased fines' fraction, from 1.45% at 30 min to 1.75% at 90 min. It is concluded that whilst kilning has little effect on flake quality, the heat treatment immediately prior to flaking, can be used to adjust flake quality independently of flake thickness.
Resumo:
Research interest in oats has focussed on their nutritional value, but there have been few studies of their food processing. Heat treatment is characteristic of oat processing, as it is needed to inactivate lipase and to facilitate flaking. A Texture Analyser was used to characterise the mechanical properties of unkilned and kilned oat groats after steaming and tempering in an oven for 30, 60 and 90 min at 80, 95 and 110 degrees C. Maximum force, number of peaks before maximum and final force after 5s hold were used to characterise the behaviour of the groats during compression. Kilned groats were larger and softer before steaming. After steaming and tempering, the moisture content of the kilned groats was higher than for unkilned groats. Hot, steamed oats were softer than cold, unsteamed groats, indicated by a decrease in maximum force from 59 to 55 N, and there was no significant difference between kilned and unkilned groats. However, higher temperatures during tempering increased maximum force. These results suggest that mild steam treatment yields softer oat groats, whereas cold or over-treated groats tend to be harder. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Cationic swede and anionic turnip peroxidases were partially purified by ion-exchange and gel-filtration chromatography, respectively. Heat treatment of these enzymes and of a commercial high purity horseradish peroxidase (HRP) caused a loss of enzyme activity and a corresponding increase in linoleic acid hydroperoxide formation activity. The hydroperoxide levels in model systems increased only in the early stages of the oxidation reaction and then declined as degradation became more significant. The presence of a dialysed blend of cooked swede markedly lowered the hydroperoxide level formed. Analysis of volatile compounds formed showed that hexanal predominated in a buffer system and in a blend of cooked turnip. In dialysed blends of cooked swede, hexanol was the primary volatile compound generated. After inactivation under mild conditions in the presence of EDTA, the peroxidases showed hydroperoxide formation activity and patterns of volatile compounds from linoleic acid that were similar to those found on heat-inactivation. This suggested that calcium abstraction from the peroxidases was critical for the enhancement of lipid oxidation activity. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The activation of presynaptic G protein-coupled receptors (GPCRs) is widely reported to inhibit transmitter release; however, the lack of accessibility of many presynaptic terminals has limited direct analysis of signalling mediators. We studied GPCR-mediated inhibition of fast cholinergic transmission between superior cervical ganglion neurones (SCGNs) in culture. The adrenoceptor agonist noradrenaline (NA) caused a dose-related reduction in evoked excitatory postsynaptic potentials (EPSPs). NA-induced EPSP decrease was accompanied by effects on the presynaptic action potential (AP), reducing AP duration and amplitude of the after-hyperpolarization (AHP), without affecting the pre- and postsynaptic membrane potential. All effects of NA were blocked by yohimbine and synaptic transmission was reduced by clonidine, consistent with an action at presynaptic alpha 2-adrenoceptors. NA-induced inhibition of transmission was sensitive to pre-incubation of SCGNs with pertussis toxin (PTX), implicating the involvement of G alpha(i)/(o)beta y subunits. Expression of G alpha transducin, an agent which sequesters G protein beta gamma (G beta y) subunits, in the presynaptic neurone caused a time-dependent attenuation of NA-induced inhibition. Injection of purified G beta gamma subunits into the presynaptic neurone inhibited transmission, and also reduced the AHP amplitude. Furthermore, NA-induced inhibition was occluded by pre-injection of G beta gamma subunits. The Ca2+ channel blocker Cd2+ mimicked NA effects on transmitter release. Cd2+, NA and G beta gamma subunits also inhibited somatic Ca2+ current. In contrast to effects on AP-evoked transmitter release, NA had no clear action on AP-independent EPSPs induced by hypertonic solutions. These results demonstrate that G beta gamma subunits functionally mediate inhibition of transmitter release by alpha 2-adrenoceptors and represent important regulators of synaptic transmission at mammalian presynaptic terminals.
Resumo:
Recently we have described an HPMA copolymer conjugate carrying both the aromatase inhibitor aminoglutethimide (AGM) and doxorubicin (Dox) as combination therapy. This showed markedly enhanced in vitro cytotoxicity compared to the HPMA copolymer-Dox (FCE28068), a conjugate that demonstrated activity in chemotherapy refractory breast cancer patients during early clinical trials. To better understand the superior activity of HPMA copolymer-Dox-AGM, here experiments were undertaken using MCF-7 and MCF-7ca (aromatase-transfected) breast cancer cell lines to: further probe the synergistic cytotoxic effects of AGM and Dox in free and conjugated form; to compare the endocytic properties of HPMA copolymer-Dox-AGM and HPMA copolymer-Dox (binding, rate and mechanism of cellular uptake); the rate of drug liberation by lysosomal thiol-dependant proteases (i.e. conjugate activation), and also, using immunocytochemistry, to compare their molecular mechanism of action. It was clearly shown that attachment of both drugs to the same polymer backbone was a requirement for enhanced cytotoxicity. FACS studies indicated both conjugates have a similar pattern of cell binding and endocytic uptake (at least partially via a cholesterol-dependent pathway), however, the pattern of enzyme-mediated drug liberation was distinctly different. Dox release from PK1 was linear with time, whereas the release of both Dox and AGM from HPMA copolymer-Dox-AGM was not, and the initial rate of AGM release was much faster than that seen for the anthracycline. Immunocytochemistry showed that both conjugates decreased the expression of ki67. However, this effect was more marked for HPMA copolymer-Dox-AGM and, moreover, only this conjugate decreased the expression of the anti-apoptotic protein bcl-2. In conclusion, the superior in vitro activity of HPMA copolymer-Dox-AGM cannot be attributed to differences in endocytic uptake, and it seems likely that the synergistic effect of Dox and AGM is due to the kinetics of intracellular drug liberation which leads to enhanced activity. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
An extensive set of machine learning and pattern classification techniques trained and tested on KDD dataset failed in detecting most of the user-to-root attacks. This paper aims to provide an approach for mitigating negative aspects of the mentioned dataset, which led to low detection rates. Genetic algorithm is employed to implement rules for detecting various types of attacks. Rules are formed of the features of the dataset identified as the most important ones for each attack type. In this way we introduce high level of generality and thus achieve high detection rates, but also gain high reduction of the system training time. Thenceforth we re-check the decision of the user-to- root rules with the rules that detect other types of attacks. In this way we decrease the false-positive rate. The model was verified on KDD 99, demonstrating higher detection rates than those reported by the state- of-the-art while maintaining low false-positive rate.
Resumo:
A cause and effect relationship between glucagon-like peptide 1 (7, 36) amide (GLP-1) and cholecystokinin (CCK) and DMI regulation has not been established in ruminants. Three randomized complete block experiments were conducted to determine the effect of feeding fat or infusing GLP-1 or CCK intravenously on DMI, nutrient digestibility, and Cr rate of passage (using Cr(2)O(3) as a marker) in wethers. A total of 18 Targhee × Hampshire wethers (36.5 ± 2.5 kg of BW) were used, and each experiment consisted of four 21-d periods (14 d for adaptation and 7 d for infusion and sampling). Wethers allotted to the control treatments served as the controls for all 3 experiments; experiments were performed simultaneously. The basal diet was 60% concentrate and 40% forage. In Exp. 1, treatments were the control (0% added fat) and addition of 4 or 6% Ca salts of palm oil fatty acids (DM basis). Treatments in Exp. 2 and 3 were the control and 3 jugular vein infusion dosages of GLP-1 (0.052, 0.103, or 0.155 µg•kg of BW(-1)•d(-1)) or CCK (0.069, 0.138, or 0.207 µg•kg of BW(-1)•d(-1)), respectively. Increases in plasma GLP-1 and CCK concentrations during hormone infusions were comparable with increases observed when increasing amounts of fat were fed. Feeding fat and infusion of GLP-1 tended (linear, P = 0.12; quadratic, P = 0.13) to decrease DMI. Infusion of CCK did not affect (P > 0.21) DMI. Retention time of Cr in the total gastrointestinal tract decreased (linear, P < 0.01) when fat was fed, but was not affected by GLP-1 or CCK infusion. In conclusion, jugular vein infusion produced similar plasma CCK and GLP-1 concentrations as observed when fat was fed. The effects of feeding fat on DMI may be partially regulated by plasma concentration of GLP-1, but are not likely due solely to changes in a single hormone concentration.
Resumo:
Genetic analysis of heat tolerance will help breeders produce rice (Oryza sativa L.) varieties adapted to future climates. An F6 population of 181 recombinant inbred lines of Bala (tolerant) × Azucena (susceptible) was screened for heat tolerance at anthesis by measuring spikelet fertility at 30°C (control) and 38°C (high temperature) in experiments conducted in the Philippines and the United Kingdom. The parents varied significantly for absolute spikelet fertility under control (79–87%) and at high temperature (2.9–47.1%), and for relative spikelet fertility (high temperature/control) at high temperature (3.7–54.9%). There was no correlation between spikelet fertility in control and high-temperature conditions and no common quantitative trait loci (QTLs) were identified. Two QTLs for spikelet fertility under control conditions were identified on chromosomes 2 and 4. Eight QTLs for spikelet fertility under high-temperature conditions were identified on chromosomes 1, 2, 3, 8, 10, and 11. The most significant heat-responsive QTL, contributed by Bala and explaining up to 18% of the phenotypic variation, was identified on chromosome 1 (38.35 mega base pairs on the rice physical genome map). This QTL was also found to influence plant height, explaining 36.6% of the phenotypic variation. A comparison with other studies of abiotic (drought, cold, salinity) stresses showed QTLs at similar positions on chromosomes 1, 3, 8, and 10, suggesting common underlying stress-responsive regions of the genome.
Resumo:
We report preliminary results from studies of biological effects induced by non-thermal levels of non-ionizing electromagnetic radiation. Exponentially growing Saccharomyces cerevisiae yeast cells grown on dry media were exposed to electromagnetic fields in the 200–350 GHz frequency range at low power density to observe possible non-thermal effects on the microcolony growth. Exposure to the electromagnetic field was conducted over 2.5 h. The data from exposure and control experiments were grouped into either large-, medium- or small-sized microcolonies to assist in the accurate assessment of growth. The three groups showed significant differences in growth between exposed and control microcolonies. A statistically significant enhanced growth rate was observed at 341 GHz. Growth rate was assessed every 30 min via time-lapse photography. Possible interaction mechanisms are discussed, taking into account Frohlich's hypothesis.
Resumo:
Long-term monitoring data from eastern North America and Europe indicate a link between increased dissolved organic carbon (DOC) concentrations in surface waters over the last two decades and decreased atmospheric pollutant and marine sulphur (S) deposition. The hypothesis is that decreased acidity and ionic strength associated with declining S deposition has increased the solubility of DOC. However, the sign and magnitude of DOC trends have varied between sites, and in some cases at sites where S deposition has declined, no significant increase in DOC has been observed, creating uncertainty about the causal mechanisms driving the observed trends. In this paper, we demonstrate chemical regulation of DOC release from organic soils in batch experiments caused by changes in acidity and conductivity (measured as a proxy for ionic strength) associated with controlled SO42− additions. DOC release from the top 10 cm of the O-horizon of organo-mineral soils and peats decreased by 21–60% in response to additions of 0–437 µeq SO42− l−1 sulphuric acid (H2SO4) and neutral sea-salt solutions (containing Na+, Mg2+, Cl−, SO42−) over a 20-hour extraction period. A significant decrease in the proportion of the acid-sensitive coloured aromatic humic acids (measured by specific ultra-violet absorbance (SUVA) at 254 nm) was also found with increasing acidity (P < 0.05) in most, but not all, soils, confirming that DOC quality, as well as quantity, changed with SO42− additions. DOC release appeared to be more sensitive to increased acidity than to increased conductivity. By comparing the change in DOC release with bulk soil properties, we found that DOC release from the O-horizon of organo-mineral soils and semi-confined peats, which contained greater exchangeable aluminium (Al) and had lower base saturation (BS), were more sensitive to SO42− additions than DOC release from blanket peats with low concentrations of exchangeable Al and greater BS. Therefore, variation in soil type and acid/base status between sites may partly explain the difference in the magnitude of DOC changes seen at different sites where declines in S deposition have been similar.