964 resultados para Nanostructure, Hydrothermal Synthesis, Catalyst, CO Oxidation
Resumo:
We extended our previous exploration of sulfur bridges as bioisosteric replacements for atoms forming the bridge between the aromatic rings of combretastatin A-4. Employing coupling reactions between 5-iodo-1,2,3-trimethoxybenzene and substituted thiols, followed by oxidation to sulfones with m-CPBA, different locations for attaching the sulfur atom to ring A through the synthesis of nine compounds were examined. Antitubulin activity was performed with electrophoretically homogenous bovine brain tubulin, and activity occurred with the 1,2,3-trimethoxy-4-[(4-methoxyphenyl)thio]benzene (12), while the other compounds were inactive. The compounds were also tested for leishmanicidal activity using promastigote forms of Leishmania braziliensis (MHOM/BR175/M2904), and the greatest activity was observed with 1,2,3-trimethoxy-4-(phenylthio)benzene (10) and 1,2,3-trimethoxy-4-[(4-methoxyphenyl) sulfinyl]benzene (15).
Resumo:
Cobalt or iron oxides supported or not on zeolite Hbeta were prepared and evaluated in the reduction reaction of NO by CO in presence of O2, SO2 or H2O. XRD results evidenced the Hbeta structure and the formation of Co3O4 and Fe2O3. TPR-H2 analysis showed complete reduction of cobalt oxide at lower temperatures than for iron oxide. The catalysts are quite active and the activity depends on the reaction temperature. The highest conversions rates were observed for pure iron oxide, which can be a relatively low cost catalyst for reduction of NO by CO, with high selectivity towards the N2 formation.
Resumo:
This work evaluates the immobilization of Candida antarctica lipase (Fraction B) using poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles as support. The effects of immobilization time (30-150 min) and pH (5-10) on lipase loading were evaluated. The stability of the immobilized enzyme towards temperature (40, 60, and 80 ºC), reuse and storage (at 4 ºC) were also determined. Furthermore, to assess its potential application in a system of interest, the immobilized lipase was used as a catalyst in the esterification of geraniol with oleic acid. The results indicated a time of 120 minutes and pH of 7 as optimal for immobilization. A 21 hour exposure of the PHBV-lipase derivative to 60 ºC showed a 33% reduction of the initial activity while storage at 4 ºC led to a residual activity (5% of the original activity). The derivative was used without significant loss of activity for 4 successive cycles. The use of the immobilized lipase as a catalyst in the production of geranyl oleate led to about 88% conversion of the initial reactants to products.
Resumo:
The synthesis of gold nanoparticles (Au NPs) 15, 26, and 34 nm in diameter, followed by the investigation of their size-dependent optical and catalytic properties, is described herein as an undergraduate level experiment. The proposed experiment covers concepts on the synthesis, stabilization, and characterization of Au NPs, their size-dependent optical and catalytic properties at the nanoscale, chemical kinetics, and the role of a catalyst. The experiment should be performed by groups of two or three students in three lab sessions of 3 h each and organized as follows: i) synthesis of Au NPs of different sizes and investigation of their optical properties; ii) evaluation of their catalytic activity; and iii) data analysis and discussion. We believe that this activity enables students to integrate these multidisciplinary concepts in a single experiment as well as to become introduced/familiarized with an active research field and current literature in the areas of nanoparticle synthesis and catalysis.
Resumo:
Materials based on tungstophosphoric acid (TPA) immobilized on NH4ZSM5 zeolite were prepared by wet impregnation of the zeolite matrix with TPA aqueous solutions. Their concentration was varied in order to obtain TPA contents of 5%, 10%, 20%, and 30% w/w in the solid. The materials were characterized by N2 adsorption-desorption isotherms, XRD, FT-IR, 31P MAS-NMR, TGA-DSC, DRS-UV-Vis, and the acidic behavior was studied by potentiometric titration with n-butylamine. The BET surface area (SBET) decreased when the TPA content was raised as a result of zeolite pore blocking. The X-ray diffraction patterns of the solids modified with TPA only presented the characteristic peaks of NH4ZSM5 zeolites, and an additional set of peaks assigned to the presence of (NH4)3PW12O40. According to the Fourier transform infrared and 31P magic angle spinning-nuclear magnetic resonance spectra, the main species present in the samples was the [PW12O40]3- anion, which was partially transformed into the [P2W21O71]6- anion during the synthesis and drying steps. The thermal stability of the NH4ZSM5TPA materials was similar to that of their parent zeolites. Moreover, the samples with the highest TPA content exhibited band gap energy values similar to those reported for TiO2. The immobilization of TPA on NH4ZSM5 zeolite allowed the obtention of catalysts with high photocatalytic activity in the degradation of methyl orange dye (MO) in water, at 25 ºC. These can be reused at least three times without any significant decrease in degree of degradation.
Resumo:
Sulfonic acid functionalized SBA-15 nanoporous material (SBA-Pr-SO3H) with a large pore size of 6 nm, a high surface area, high selectivity, and excellent chemical and thermal stability was applied as an efficient heterogeneous nanoporous acid catalyst in the reaction of isatin with pyrazolones under mild reaction conditions. A novel class of symmetrical spiro[indoline-3,4'-pyrano[2,3-c:6,5-c']dipyrazol]-2-one derivatives was successfully obtained in high yields. Comparison of these results with those reported in the literature shows that the current method is efficient, and results in better reaction times and yields of the desired products. Other advantages of this new method are its operational simplicity, easy work-up procedure, and the use of SBA-Pr-SO3H as a reusable and environmentally benign nanoreactor, such that the reaction proceeds easily in its nanopores. We also tested the antimicrobial activity of the prepared compounds using the disc diffusion method, and some of the synthesized compounds exhibited the best results against B. subtilis and S. aureus.
Resumo:
We report the single-step derivatization reaction of a biopolymer based onL -lysine with D -biotin analogs:Co -poly(L -lysine)-graft-(ε-N -[X-D-biotinyl]-L -lysine) (PLL-X-Biotin). The valeric acid carboxylate of D -biotin is activated to an NHS ester for direct modification of amine groups in proteins and other macromolecules. NHS esters react by nucleophilic attack of an amine in the carbonyl group, releasing the NHS group, and forming a stable amide linkage. NHS-X-Biotin is the simplest biotinylation reagent commercially available. In contrast withD -biotin, it has a longer spacer arm off the valeric acid side chain allowing better binding potential for avidin or streptavidin probes. Derivatization of poly(L -lysine) (PLL) with NHS-X-Biotin led to a copolymer PLL-X-Biotin. UV-Visible, IR-FT and 1H NMR characteristics derived from synthesis are briefly discussed.
Resumo:
The aim of this work is to systematically explore the effect of the synthesis conditions of ZnO structures, immobilized on different substrates by hydrothermal treatment, in its photocatalytic activity. A circumscribed central composite design of experiments was used to analyze the effects of reagents stoichiometry, reaction time and temperature, covering a wide range of these variables. The substrates used were etched glass, copper and zinc foils. The photocatalytic activity of the as-obtained ZnO samples was evaluated through photocatalytic degradation of rhodamine B (RhB) in aqueous solution under UV irradiation. Zinc foils presented the best immobilized film quality and the maximum dye removal was 80% in one hour of UV exposure.
Resumo:
The dissertation is based on four articles dealing with recalcitrant lignin water purification. Lignin, a complicated substance and recalcitrant to most treatment technologies, inhibits seriously pulp and paper industry waste management. Therefore, lignin is studied, using WO as a process method for its degradation. A special attention is paid to the improvement in biodegradability and the reduction of lignin content, since they have special importance for any following biological treatment. In most cases wet oxidation is not used as a complete ' mineralization method but as a pre treatment in order to eliminate toxic components and to reduce the high level of organics produced. The combination of wet oxidation with a biological treatment can be a good option due to its effectiveness and its relatively low technology cost. The literature part gives an overview of Advanced Oxidation Processes (AOPs). A hot oxidation process, wet oxidation (WO), is investigated in detail and is the AOP process used in the research. The background and main principles of wet oxidation, its industrial applications, the combination of wet oxidation with other water treatment technologies, principal reactions in WO, and key aspects of modelling and reaction kinetics are presented. There is also given a wood composition and lignin characterization (chemical composition, structure and origin), lignin containing waters, lignin degradation and reuse possibilities, and purification practices for lignin containing waters. The aim of the research was to investigate the effect of the operating conditions of WO, such as temperature, partial pressure of oxygen, pH and initial concentration of wastewater, on the efficiency, and to enhance the process and estimate optimal conditions for WO of recalcitrant lignin waters. Two different waters are studied (a lignin water model solution and debarking water from paper industry) to give as appropriate conditions as possible. Due to the great importance of re using and minimizing the residues of industries, further research is carried out using residual ash of an Estonian power plant as a catalyst in wet oxidation of lignin-containing water. Developing a kinetic model that includes in the prediction such parameters as TOC gives the opportunity to estimate the amount of emerging inorganic substances (degradation rate of waste) and not only the decrease of COD and BOD. The degradation target compound, lignin is included into the model through its COD value (CODligning). Such a kinetic model can be valuable in developing WO treatment processes for lignin containing waters, or other wastewaters containing one or more target compounds. In the first article, wet oxidation of "pure" lignin water was investigated as a model case with the aim of degrading lignin and enhancing water biodegradability. The experiments were performed at various temperatures (110 -190°C), partial oxygen pressures (0.5 -1.5 MPa) and pH (5, 9 and 12). The experiments showed that increasing the temperature notably improved the processes efficiency. 75% lignin reduction was detected at the lowest temperature tested and lignin removal improved to 100% at 190°C. The effect of temperature on the COD removal rate was lower, but clearly detectable. 53% of organics were oxidized at 190°C. The effect of pH occurred mostly on lignin removal. Increasing the pH enhanced the lignin removal efficiency from 60% to nearly 100%. A good biodegradability ratio (over 0.5) was generally achieved. The aim of the second article was to develop a mathematical model for "pure" lignin wet oxidation using lumped characteristics of water (COD, BOD, TOC) and lignin concentration. The model agreed well with the experimental data (R2 = 0.93 at pH 5 and 12) and concentration changes during wet oxidation followed adequately the experimental results. The model also showed correctly the trend of biodegradability (BOD/COD) changes. In the third article, the purpose of the research was to estimate optimal conditions for wet oxidation (WO) of debarking water from the paper industry. The WO experiments were' performed at various temperatures, partial oxygen pressures and pH. The experiments showed that lignin degradation and organics removal are affected remarkably by temperature and pH. 78-97% lignin reduction was detected at different WO conditions. Initial pH 12 caused faster removal of tannins/lignin content; but initial pH 5 was more effective for removal of total organics, represented by COD and TOC. Most of the decrease in organic substances concentrations occurred in the first 60 minutes. The aim of the fourth article was to compare the behaviour of two reaction kinetic models, based on experiments of wet oxidation of industrial debarking water under different conditions. The simpler model took into account only the changes in COD, BOD and TOC; the advanced model was similar to the model used in the second article. Comparing the results of the models, the second model was found to be more suitable for describing the kinetics of wet oxidation of debarking water. The significance of the reactions involved was compared on the basis of the model: for instance, lignin degraded first to other chemically oxidizable compounds rather than directly to biodegradable products. Catalytic wet oxidation of lignin containing waters is briefly presented at the end of the dissertation. Two completely different catalysts were used: a commercial Pt catalyst and waste power plant ash. CWO showed good performance using 1 g/L of residual ash gave lignin removal of 86% and COD removal of 39% at 150°C (a lower temperature and pressure than with WO). It was noted that the ash catalyst caused a remarkable removal rate for lignin degradation already during the pre heating for `zero' time, 58% of lignin was degraded. In general, wet oxidation is not recommended for use as a complete mineralization method, but as a pre treatment phase to eliminate toxic or difficultly biodegradable components and to reduce the high level of organics. Biological treatment is an appropriate post treatment method since easily biodegradable organic matter remains after the WO process. The combination of wet oxidation with subsequent biological treatment can be an effective option for the treatment of lignin containing waters.
Resumo:
Solid-state M-3-MeO-Bz compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and 3-MeO-Bz is 3-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, and chemical analysis were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
Solid-state M-2-MeO-Bz compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and 2-MeO-Bz is 2-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), thermogravimetry, derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to have information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
The Co(II), Ni(II) and Cu(II) metal ions complexes of Bis(4-amino-5-mercapto-1,2,4-triazol-3-yl) alkanes (BATs) have been prepared and characterized by elemental analysis, conductivity measurements infrared, magnetic susceptibility, the electronic spectral data and thermal studies. Based on spectral and magnetic results, the ligands are tetradentate coordinating through the N and S-atoms of BATs; six-coordinated octahedral or distorted octahedral and some times four-coordinated square planar were proposed for these complexes. Activation energies computed for the thermal decomposition steps were compared. The ligands and their metal complexes were tested in vitro for their biological effects. Their activities against two gram-positive, two gram-negative bacteria and two fungal species were found to vary from moderate to very strong.
Resumo:
Solid state M-L compounds, were M stands for bivalent Mn, Fe, Co, Ni, Cu, Zn and L is pyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-Ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, ligand denticity, and thermal decomposition of the isolated compounds.
Resumo:
Solid State M-2-MeO-CP compounds, where M stands for bivalent metals (Mn, Fe, Co, Ni, Cu and Zn) and 2-MeO-CP is 2-methoxycinnamylidenepyruvate, were synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), elemental analysis and complexometry were used to establish the stoichiometry and to study the thermal behaviour of these compounds in CO2 and N2 atmospheres. The results were consistent with the general formula: M(L)2∙H2O. In both atmospheres (CO2, N2) the thermal decomposition occurs in consecutive steps which are characteristic of each compound. For CO2 atmosphere the final residues were: Mn3O4, Fe3O4, Co3O4, NiO, Cu2O and ZnO, while under N2 atmosphere the thermal decomposition is still observed at 1000 º C.
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.