994 resultados para NUCLEAR POLYHEDROSIS-VIRUS
Resumo:
Introducción: La medición de la concentración de hierro hepática (CHH) por RM es una técnica no invasiva de gran utilidad en el diagnóstico de los pacientes con sospecha de sobrecarga férrica en hígado. Objetivo:Validar la eficacia de la RM 1 Tesla en la determinación de la (CHH) en pacientes con sospecha de sobrecarga férrica. Validar su capacidad para diagnosticar o descartar la presencia de una CHH sugestiva de hemocromatosis. Pacientes y métodos:Estudio observacional, transversal, con inclusión prospectiva de pacientes consecutivos. De 2002 a 2010 hemos obtenido la CHH estimada mediante RM 1 Tesla (método Gandon) y de RM 1,5 Tesla (método Alústiza), y mediante BH, en 56 pacientes consecutivos (58RM:35/23). Resultados:Grupo RM 1 Tesla: de acuerdo con CHH en BH, 15 pacientes clasificados como normales (<36µmol/g)-la RM valoró correctamente 7; sobreestimó 8-; 15 grupo hemosiderosis (36-80 µmol/g)-RM valoró correctamente 5, sobreestimó 10-; 5 grupo hemocromatosis (>80 µmol/g)-valoró correctamente las 5-. Existió una correlación entre la determinación de la CHH por BH y RM 1 Tesla con r=0.619. Existieron diferencias estadísticamente significativas (p<0.05) entre CHH media por biopsia (53.43/DE45.67/IC95%37.74 a 69.12) y por RM 1 Tesla (76.14/DE47.31/IC95% 60.46 a 92.97), con sobrevaloración por parte de la RM. Grupo RM 1,5 Tesla: de acuerdo con CHH en BH, normal en 14, hemosiderosis en 6 y hemocromatosis en 3. La RM valoró correctamente 6 y sobreestimó 8 en grupo normal; grupo hemosiderosis, 3 correctamente, 3 sobrevalorados; grupo hemocromatosis, valoró correctamente los 3. La correlación entre CHH por BH y RM 1,5 Tesla fue de r=0.815. La CHH media obtenida por BH (69,34/DE152.1/IC95% 3.57 a 135.1 ) y RM 1,5 Tesla (70.43/DE 57.63/IC95% 45.51 a 95.36) no demostraron diferencias significativas (p>0.05). Conclusiones: La determinación de CHH por RM 1 Tesla (método Gandon) es útil para diagnosticar o descartar hemocromatosis y para diagnosticar CHH normal. Existe una importante tendencia a la sobreestimación en pacientes sin y con sobrecarga férrica en la CHH obtenida por RM 1 Tesla. La determinación de CHH por RM 1,5 Tesla (método Alústiza) es superior a la de RM 1 Tesla, aunque también existe una tendencia a sobreestimar. La CHH media obtenida por BH o RM 1,5 Tesla no tuvieron diferencias significativas. En cambio si existieron entre BH y RM 1 Tesla.
Resumo:
A biosensor based on imaging ellipsometry (BIE) has been developed and validated in 169 patients for detecting five markers of hepatitis B virus (HBV) infection. The methodology has been established to pave the way for clinical diagnosis, including ligand screening, determination of the sensitivity, set-up of cut-off values (CoVs) and comparison with other clinical methods. A matrix assay method was established for ligand screening. The CoVs of HBV markers were derived with the help of receiver operating characteristic curves. Enzyme-linked immunosorbent assay (ELISA) was the reference method. Ligands with high bioactivity were selected and sensitivities of 1 ng/mL and 1 IU/mL for hepatitis B surface antigen (HBsAg) and surface antibody (anti-HBs) were obtained respectively. The CoVs of HBsAg, anti-HBs, hepatitis B e antigen, hepatitis B e antibody and core antibody were as follows: 15%, 18%, 15%, 20% and 15%, respectively, which were the percentages over the values of corresponding ligand controls. BIE can simultaneously detect up to five markers within 1 h with results in acceptable agreement with ELISA, and thus shows a potential for diagnosing hepatitis B with high throughput.
Resumo:
Hartree-Fock (HF) calculations have had remarkable success in describing large nuclei at high spin, temperature and deformation. To allow full range of possible deformations, the Skyrme HF equations can be discretized on a three-dimensional mesh. However, such calculations are currently limited by the computational resources provided by traditional supercomputers. To take advantage of recent developments in massively parallel computing technology, we have implemented the LLNL Skyrme-force static and rotational HF codes on Intel's DELTA and GAMMA systems at Caltech.
We decomposed the HF code by assigning a portion of the mesh to each node, with nearest neighbor meshes assigned to nodes connected by communication· channels. This kind of decomposition is well-suited for the DELTA and the GAMMA architecture because the only non-local operations are wave function orthogonalization and the boundary conditions of the Poisson equation for the Coulomb field.
Our first application of the HF code on parallel computers has been the study of identical superdeformed (SD) rotational bands in the Hg region. In the last ten years, many SD rotational bands have been found experimentally. One very surprising feature found in these SD rotational bands is that many pairs of bands in nuclei that differ by one or two mass units have nearly identical deexcitation gamma-ray energies. Our calculations of the five rotational bands in ^(192)Hg and ^(194)Pb show that the filling of specific orbitals can lead to bands with deexcitation gamma-ray energies differing by at most 2 keV in nuclei differing by two mass units and over a range of angular momenta comparable to that observed experimentally. Our calculations of SD rotational bands in the Dy region also show that twinning can be achieved by filling or emptying some specific orbitals.
The interpretation of future precise experiments on atomic parity nonconservation (PNC) in terms of parameters of the Standard Model could be hampered by uncertainties in the atomic and nuclear structure. As a further application of the massively parallel HF calculations, we calculated the proton and neutron densities of the Cesium isotopes from A = 125 to A = 139. Based on our good agreement with experimental charge radii, binding energies, and ground state spins, we conclude that the uncertainties in the ratios of weak charges are less than 10^(-3), comfortably smaller than the anticipated experimental error.
Resumo:
In Part I of this thesis, a new magnetic spectrometer experiment which measured the β spectrum of ^(35)S is described. New limits on heavy neutrino emission in nuclear β decay were set, for a heavy neutrino mass range between 12 and 22 keV. In particular, this measurement rejects the hypothesis that a 17 keV neutrino is emitted, with sin^2 θ = 0.0085, at the 6δ statistical level. In addition, an auxiliary experiment was performed, in which an artificial kink was induced in the β spectrum by means of an absorber foil which masked a fraction of the source area. In this measurement, the sensitivity of the magnetic spectrometer to the spectral features of heavy neutrino emission was demonstrated.
In Part II, a measurement of the neutron spallation yield and multiplicity by the Cosmic-ray Underground Background Experiment is described. The production of fast neutrons by muons was investigated at an underground depth of 20 meters water equivalent, with a 200 liter detector filled with 0.09% Gd-loaded liquid scintillator. We measured a neutron production yield of (3.4 ± 0.7) x 10^(-5) neutrons per muon-g/cm^2, in agreement with other experiments. A single-to-double neutron multiplicity ratio of 4:1 was observed. In addition, stopped π^+ decays to µ^+ and then e^+ were observed as was the associated production of pions and neutrons, by the muon spallation interaction. It was seen that practically all of the π^+ produced by muons were also accompanied by at least one neutron. These measurements serve as the basis for neutron background estimates for the San Onofre neutrino detector.
Resumo:
The roles of the folate receptor and an anion carrier in the uptake of 5- methyltetrahydrofolate (5-MeH_4folate) were studied in cultured human (KB) cells using radioactive 5-MeH_4folate. Binding of the 5-MeH_4folate was inhibited by folic acid, but not by probenecid, an anion carrier inhibitor. The internalization of 5-MeH_4folate was inhibited by low temperature, folic acid, probenecid and methotrexate. Prolonged incubation of cells in the presence of high concentrations of probenecid appeared to inhibit endocytosis of folatereceptors as well as the anion carrier. The V_(max) and K_M values for the carrier were 8.65 ± 0.55 pmol/min/mg cell protein and 3.74 ± 0.54µM, respectively. The transport of 5-MeH4folate was competitively inhibited by folic acid, probenecid and methotrexate. The carrier dissociation constants for folic acid, probenecid and methotreate were 641 µM, 2.23 mM and 13.8 µM, respectively. Kinetic analysis suggests that 5-MeH_4folate at physiological concentration is transported through an anion carrier with the characteristics of the reduced-folate carrier after 5-MeH_4folate is endocytosed by folate receptors in KB cells. Our data with KB cells suggest that folate receptors and probenecid-sensitive carriers work in tandem to transport 5-MeH_4folate to the cytoplasm of cells, based upon the assumption that 1 mM probenecid does not interfere with the acidification of the vesicle where the folate receptors are endocytosed.
Oligodeoxynucleotides designed to hybridize to specific mRNA sequences (antisense oligonucleotides) or double stranded DNA sequences have been used to inhibit the synthesis of a number of cellular and viral proteins (Crooke, S. T. (1993) FASEB J. 7, 533-539; Carter, G. and Lemoine, N. R. (1993) Br. J. Cacer 67, 869-876; Stein, C. A. and cohen, J. S. (1988) Cancer Res. 48, 2659-2668). However, the distribution of the delivered oligonucleotides in the cell, i.e., in the cytoplasm or in the nucleus has not been clearly defined. We studied the kinetics of oligonucleotide transport into the cell nucleus using reconstituted cell nuclei as a model system. We present evidences here that oligonucleotides can freely diffuse into reconstituted nuclei. Our results are consistent with the reports by Leonetti et al. (Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 2702-2706, April 1991), which were published while we were carrying this research independently. We also investigated whether a synthetic nuclear localization signal (NLS) peptide of SV40 T antigen could be used for the nuclear targeting of oligonucleotides. We synthesized a nuclear localization signal peptide-conjugated oligonucleotide to see if a nuclear localization signal peptide can enhance the uptake of oligonucleotides into reconstituted nuclei of Xenopus. Uptake of the NLS peptide-conjugated oligonucleotide was comparable to the control oligonucleotide at similar concentrations, suggesting that the NLS signal peptide does not significantly enhance the nuclear accumulation of oligonucleotides. This result is probably due to the small size of the oligonucleotide.
Resumo:
Distinct structures delineating the introns of Simian Virus 40 T-antigen and Adenovirus 2 E1A genes have been discovered. The structures, which are centered around the branch points of the genes inserted in supercoiled double-stranded plasmids, are specifically targeted through photoactivated strand cleavage by the metal complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III). The DNA sites that are recognized lack sequence homology but are similar in demarcating functionally important sites on the RNA level. The single-stranded DNA fragments corresponding to the coding strands of the genes were also found to fold into a structure apparently identical to that in the supercoiled genes based on the recognition by the metal complex. Further investigation of different single-stranded DNA fragments with other structural probes, such as another metal complex bis(1,10-phenanthroline)(phenanthrenequinone diimine)rhodium(III), AMT (4'aminomethyl-4,5',8 trimethylpsoralen), restriction enzyme Mse I, and mung bean nuclease, showed that the structures require the sequ ences at both ends of the intron plus the flanking sequences but not the middle of the intron. The two ends form independent helices which interact with each other to form the global tertiary structures. Both of the intron structures share similarities to the structure of the Holliday junction, which is also known to be specifically targeted by the former metal complex. These structures may have arisen from early RNA intron structures and may have been used to facilitate the evolution of genes through exon shuffling by acting as target sites for recombinase enzymes.
Resumo:
Nuclear weak interaction rates, including electron and positron emission rates, and continuum electron and positron capture rates , as well as the associated v and –/v energy loss rates are calculated on a detailed grid of temperature and density for the free nucleons and 226 nuclei with masses between A = 21 and 60. Gamow-Teller and Fermi discrete-state transition matrix element systematics and the Gamow-Teller T^< →/← T^> resonance transitions are discussed in depth and are implemented in the stellar rate calculations. Results of the calculations are presented on an abbreviated grid of temperature and density and comparison is made to terrestrial weak transition rates where possible. Neutron shell blocking of allowed electron capture on heavy nuclei during stellar core collapse is discussed along with several unblocking mechanisms operative at high temperature and density. The results of one-zone collapse calculations are presented which suggest that the effect of neutron shell blocking is to produce a larger core lepton fraction at neutrino trapping which leads to a larger inner-core mass and hence a stronger post-bounce shock.
Resumo:
This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)(n)) in a gas jet subjected to intense femtosecond laser pulses (170 mJ, 70 fs) have led to table-top laser driven DD nuclear fusion. The clusters produced in supersonic expansion had an average energies of deuterons produced in the laser-cluster interaction were 60 and 1.5 KeV, respectively. From DD collisons of energetic deuterons, a yield of 2.5(+/-0.4)x10(4) fusion neutrons of 2.45 MeV per shot was realized, giving rise to a neutron production efficiency of about 1.5 x 10(5) per joule of incident laser pulse energy. Theoretical calculations were performed and a fairly good agreement of the calculated neutron yield with that obtained from the present experiment was found.
Resumo:
In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e., two-dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. I tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wave function and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, I also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states and suggest an experimental method to detect Wigner crystals.
The second part of the thesis investigates infinite nuclear matter on a cubic lattice. The exact thermal formalism describes nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-exchange and isospin-exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy and basic saturation properties of nuclear matter can be reproduced. A first order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. The structure of the clusters is investigated with the help two-body correlations. I compare symmetry energy and first sound velocities with literature and find reasonable agreement. I also calculate the energy of pure neutron matter and search for a similar phase transition, but the survey is restricted by the infamous Monte Carlo sign problem. Also, a regularization scheme to extract potential parameters from scattering lengths and effective ranges is investigated.
Resumo:
4 p.
Resumo:
This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.
In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.
In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.
Resumo:
In the first part of this thesis, experiments utilizing an NMR phase interferometric concept are presented. The spinor character of two-level systems is explicitly demonstrated by using this concept. Following this is the presentation of an experiment which uses this same idea to measure relaxation times of off-diagonal density matrix elements corresponding to magnetic-dipole-forbidden transitions in a ^(13)C-^1H, AX spin system. The theoretical background for these experiments and the spin dynamics of the interferometry are discussed also.
The second part of this thesis deals with NMR dipolar modulated chemical shift spectroscopy, with which internuclear bond lengths and bond angles with respect to the chemical shift principal axis frame are determined from polycrystalline samples. Experiments using benzene and calcium formate verify the validity of the technique in heteronuclear (^(13)C-^1H) systems. Similar experiments on powdered trichloroacetic acid confirm the validity in homonuclear (^1H- ^1H) systems. The theory and spin dynamics are explored in detail, and the effects of a number of multiple pulse sequences are discussed.
The last part deals with an experiment measuring the ^(13)C chemical shift tensor in K_2Pt(CN)_4Br_(0.3) • 3H_2O, a one-dimensional conductor. The ^(13)C spectra are strongly affected by ^(14)N quadrupolar interactions via the ^(13)C - ^(14)N dipolar interaction. Single crystal rotation spectra are shown.
An appendix discussing the design, construction, and performance of a single-coil double resonance NMR sample probe is included.