915 resultados para NONLINEAR-OPTICAL PROPERTIES
Resumo:
Sr2+ co-doped LaBr3:5%Ce scintillators show a record low energy resolution of 2% at 662 keV and a considerably better proportional response compared to standard LaBr3:5%Ce. This paper reports on the optical properties and time response of Sr co-doped LaBr3:5%Ce. Multiple excitation and emission bands were observed in X-ray and optically excited luminescence measurements. Those bands are ascribed to three different Ce3+ sites. The first is the unperturbed site with the same luminescence properties as those of standard LaBr3:Ce. The other two are perturbed sites with red-shifted 4f-5d1 Ce3+ excitation and emission bands, longer Ce3+ decay times, and smaller Stokes shifts. The lowering of the lowest 5d level of Ce3+ was ascribed to larger crystal field interactions at the perturbed sites. Two types of point defects in the LaBr3 matrix were proposed to explain the observed results. No Ce4+ ions were detected in Sr co-doped LaBr3:5%Ce by diffuse reflectance measurements.
Resumo:
The accurate electron density and linear optical properties of L-histidinium hydrogen oxalate are discussed. Two high-resolution single crystal X-ray diffraction experiments were performed and compared with density functional calculations in the solid state as well as in the gas phase. The crystal packing and the hydrogen bond network are accurately investigated using topological analysis based on quantum theory of atoms in molecules, Hirshfeld surface analysis, and electrostatic potential mapping. The refractive indices are computed from couple perturbed Kohn-Sham calculations and measured experimentally. Moreover, distributed atomic polarizabilities are used to analyze the origin of the linear susceptibility in the crystal, in order to separate molecular and intermolecular causes. The optical properties are also correlated with the electron density distribution. This compound also offers the possibility to test the electron density building block approach for material science and different refinement schemes for accurate positions and displacement parameters of hydrogen atoms, in the absence of neutron diffraction data.
Resumo:
We have recently developed a method to obtain distributed atomic polarizabilities adopting a partitioning of the molecular electron density (for example, the Quantum Theory of Atoms in Molecules, [1]), calculated with or without an applied electric field. The procedure [2] allows to obtained atomic polarizability tensors, which are perfectly exportable, because quite representative of an atom in a given functional group. Among the many applications of this idea, the calculation of crystal susceptibility is easily available, either from a rough estimation (the polarizability of the isolated molecule is used) or from a more precise estimation (the polarizability of a molecule embedded in a cluster representing the first coordination sphere is used). Lorentz factor is applied to include the long range effect of packing, which is enhancing the molecular polarizability. Simple properties like linear refractive index or the gyration tensor can be calculated at relatively low costs and with good precision. This approach is particularly useful within the field of crystal engineering of organic/organometallic materials, because it would allow a relatively easy prediction of a property as a function of the packing, thus allowing "reverse crystal engineering". Examples of some amino acid crystals and salts of amino acids [3] will be illustrated, together with other crystallographic or non-crystallographic applications. For example, the induction and dispersion energies of intermolecular interactions could be calculated with superior precision (allowing anisotropic van der Waals interactions). This could allow revision of some commonly misunderstood intermolecular interactions, like the halogen bonding (see for example the recent remarks by Stone or Gilli [4]). Moreover, the chemical reactivity of coordination complexes could be reinvestigated, by coupling the conventional analysis of the electrostatic potential (useful only in the circumstances of hard nucleophilic/electrophilic interaction) with the distributed atomic polarizability. The enhanced reactivity of coordinated organic ligands would be better appreciated. [1] R. F. W. Bader, Atoms in Molecules: A Quantum Theory. Oxford Univ. Press, 1990. [2] A. Krawczuk-Pantula, D. Pérez, K. Stadnicka, P. Macchi, Trans. Amer. Cryst. Ass. 2011, 1-25 [3] A. S. Chimpri1, M. Gryl, L. H.R. Dos Santos1, A. Krawczuk, P. Macchi Crystal Growth & Design, in the press. [4] a) A. J. Stone, J. Am. Chem. Soc. 2013, 135, 7005−7009; b) V. Bertolasi, P. Gilli, G. Gilli Crystal Growth & Design, 2013, 12, 4758-4770.
Resumo:
Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.
Resumo:
The outcome of light-based therapeutic approaches depends on light propagation in biological tissues, which is governed by their optical properties. The objective of this study was to quantify optical properties of brain tissue in vivo and postmortem and assess changes due to tissue handling postmortem. The study was carried out on eight female New Zealand white rabbits. The local fluence rate was measured in the VIS/NIR range in the brain in vivo, just postmortem, and after six weeks’ storage of the head at −20∘C or in 10% formaldehyde solution. Only minimal changes in the effective attenuation coefficient μeff were observed for two methods of sacrifice, exsanguination or injection of KCl. Under all tissue conditions, μeff decreased with increasing wavelengths. After long-term storage for six weeks at −20∘C, μeff decreased, on average, by 15 to 25% at all wavelengths, while it increased by 5 to 15% at all wavelengths after storage in formaldehyde. We demonstrated that μeff was not very sensitive to the method of animal sacrifice, that tissue freezing significantly altered tissue optical properties, and that formalin fixation might affect the tissue’s optical properties.
Resumo:
The general goal of this thesis is correlating observable properties of organic and metal-organic materials with their ground-state electron density distribution. In a long-term view, we expect to develop empirical or semi-empirical approaches to predict materials properties from the electron density of their building blocks, thus allowing to rationally engineering molecular materials from their constituent subunits, such as their functional groups. In particular, we have focused on linear optical properties of naturally occurring amino acids and their organic and metal-organic derivatives, and on magnetic properties of metal-organic frameworks. For analysing the optical properties and the magnetic behaviour of the molecular or sub-molecular building blocks in materials, we mostly used the more traditional QTAIM partitioning scheme of the molecular or crystalline electron densities, however, we have also investigated a new approach, namely, X-ray Constrained Extremely Localized Molecular Orbitals (XC-ELMO), that can be used in future to extracted the electron densities of crystal subunits. With the purpose of rationally engineering linear optical materials, we have calculated atomic and functional group polarizabilities of amino acid molecules, their hydrogen-bonded aggregates and their metal-organic frameworks. This has enabled the identification of the most efficient functional groups, able to build-up larger electric susceptibilities in crystals, as well as the quantification of the role played by intermolecular interactions and coordinative bonds on modifying the polarizability of the isolated building blocks. Furthermore, we analysed the dependence of the polarizabilities on the one-electron basis set and the many-electron Hamiltonian. This is useful for selecting the most efficient level of theory to estimate susceptibilities of molecular-based materials. With the purpose of rationally design molecular magnetic materials, we have investigated the electron density distributions and the magnetism of two copper(II) pyrazine nitrate metal-organic polymers. High-resolution X-ray diffraction and DFT calculations were used to characterize the magnetic exchange pathways and to establish relationships between the electron densities and the exchange-coupling constants. Moreover, molecular orbital and spin-density analyses were employed to understand the role of different magnetic exchange mechanisms in determining the bulk magnetic behaviour of these materials. As anticipated, we have finally investigated a modified version of the X-ray constrained wavefunction technique, XC-ELMOs, that is not only a useful tool for determination and analysis of experimental electron densities, but also enables one to derive transferable molecular orbitals strictly localized on atoms, bonds or functional groups. In future, we expect to use XC-ELMOs to predict materials properties of large systems, currently challenging to calculate from first-principles, such as macromolecules or polymers. Here, we point out advantages, needs and pitfalls of the technique. This work fulfils, at least partially, the prerequisites to understand materials properties of organic and metal-organic materials from the perspective of the electron density distribution of their building blocks. Empirical or semi-empirical evaluation of optical or magnetic properties from a preconceived assembling of building blocks could be extremely important for rationally design new materials, a field where accurate but expensive first-principles calculations are generally not used. This research could impact the community in the fields of crystal engineering, supramolecular chemistry and, of course, electron density analysis.
Resumo:
Nowadays, efficiency improvement of solar cells is one of the most important issues in photovoltaic systems and CdTe is one of the most promising thin film photovoltaic materials we can found. CdTe reported efficiencies in solar energy conversion have been as good as that found in polycrystalline Si thin film cell [1], besides CdTe can be easily produced at industrial scale.