898 resultados para NONLINEAR-ANALYSIS
Resumo:
We present a novel approach for detecting severe obstructive sleep apnea (OSA) cases by introducing non-linear analysis into sustained speech characterization. The proposed scheme was designed for providing additional information into our baseline system, built on top of state-of-the-art cepstral domain modeling techniques, aiming to improve accuracy rates. This new information is lightly correlated with our previous MFCC modeling of sustained speech and uncorrelated with the information in our continuous speech modeling scheme. Tests have been performed to evaluate the improvement for our detection task, based on sustained speech as well as combined with a continuous speech classifier, resulting in a 10% relative reduction in classification for the first and a 33% relative reduction for the fused scheme. Results encourage us to consider the existence of non-linear effects on OSA patients' voices, and to think about tools which could be used to improve short-time analysis.
Resumo:
The purpose of this work is to propose a structure for simulating power systems using behavioral models of nonlinear DC to DC converters implemented through a look-up table of gains. This structure is specially designed for converters whose output impedance depends on the load current level, e.g. quasi-resonant converters. The proposed model is a generic one whose parameters can be obtained by direct measuring the transient response at different operating points. It also includes optional functionalities for modeling converters with current limitation and current sharing in paralleling characteristics. The pusposed structured also allows including aditional characteristics of the DC to DC converter as the efficency as a function of the input voltage and the output current or overvoltage and undervoltage protections. In addition, this proposed model is valid for overdamped and underdamped situations.
Resumo:
Cable-stayed bridges represent nowadays key points in transport networks and their seismic behavior needs to be fully understood, even beyond the elastic range of materials. Both nonlinear dynamic (NL-RHA) and static (pushover) procedures are currently available to face this challenge, each with intrinsic advantages and disadvantages, and their applicability in the study of the nonlinear seismic behavior of cable-stayed bridges is discussed here. The seismic response of a large number of finite element models with different span lengths, tower shapes and class of foundation soil is obtained with different procedures and compared. Several features of the original Modal Pushover Analysis (MPA) are modified in light of cable-stayed bridge characteristics, furthermore, an extension of MPA and a new coupled pushover analysis (CNSP) are suggested to estimate the complex inelastic response of such outstanding structures subjected to multi-axial strong ground motions.
Resumo:
The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require 3D coupled vehicle-bridge models, and consideration of wheel to rail contact, a phenomenon which is complex and costly to model in detail. We describe here a fully nonlinear coupled model, described in absolute coordinates and incorporated into a commercial finite element framework. Two applications are presented, firstly to a vehicle subject to a strong wind gust traversing a br idge, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle. The second application is to a real viaduct in a high-speed line, with a long continuous deck and tall piers with high lateral compliance. The results show the safety of the traffic as well as the relevance of considering the wind action and the nonlinear response.
Resumo:
In this paper fault detection and isolation (FDI) schemes are applied in the context of the surveillance of emerging faults in an electrical circuit. The FDI problem is studied on a noisy nonlinear circuit, where both abrupt and incipient faults in the voltage source are considered. A rigorous analysis of fault detectability precedes the application of the fault detection (FD) scheme; then, the fault isolation (FI) phase is accomplished with two alternative FI approaches, proposed as new extensions of that FD approach. Numerical simulations illustrate the applicability of the mentioned schemes.
Resumo:
The analysis of complex nonlinear systems is often carried out using simpler piecewise linear representations of them. A principled and practical technique is proposed to linearize and evaluate arbitrary continuous nonlinear functions using polygonal (continuous piecewise linear) models under the L1 norm. A thorough error analysis is developed to guide an optimal design of two kinds of polygonal approximations in the asymptotic case of a large budget of evaluation subintervals N. The method allows the user to obtain the level of linearization (N) for a target approximation error and vice versa. It is suitable for, but not limited to, an efficient implementation in modern Graphics Processing Units (GPUs), allowing real-time performance of computationally demanding applications. The quality and efficiency of the technique has been measured in detail on two nonlinear functions that are widely used in many areas of scientific computing and are expensive to evaluate.
Resumo:
A significant number of short-to-mid height RC buildings with wide beams have been constructed in areas of moderate seismicity of Spain, mainly for housing and administrative use. The buildings have a framed structure with one-way slabs; the wide beams constitute the distinctive characteristic, their depth being equal to that of the rest of the slab, thus providing a flat lower surface, convenient for construction and the layout of facilities. Seismic behavior in the direction of the wide beams appears to be deficient because of: (i) low lateral strength, mainly because of the small effective depth of the beams, (ii) inherent low ductility of the wide beams, generated by high amount of reinforcement, (iii) the big strut compressive forces developed inside the column-beam connections due to the low height of the beams, and (iv) the fact that the wide beams are wider than the columns, meaning that the contribution of the outer zones to the resistance of the beam-column joints is unreliable because there is no torsion reinforcement. In the orthogonal direction, the behavior is worse since the only members of the slabs that contribute to the lateral resistance are the joists and the façade beams. Moreover, these buildings were designed with codes that did not include ductility requirements and required only a low lateral resistance; indeed, in many cases, seismic action was not considered at all. Consequently, the seismic capacity of these structures is not reliable. The objective of this research is to assess numerically this capability, whereas further research will aim to propose retrofit strategies. The research approach consists of: (i) selecting a number of 3-story and 6-story buildings that represent the vast majority of the existing ones and (ii) evaluating their vulnerability through three types of analyses, namely: code-type, push-over and nonlinear dynamic analysis. Given the low lateral resistance of the main frames, the cooperation of the masonry infill walls is accounted for; for each representative building, three wall densities are considered. The results of the analyses show that the buildings in question exhibit inadequate seismic behavior in most of the examined situations. In general, the relative performance is less deficient for Target Drift CP (Collapse Prevention) than for IO (Immediate Occupancy). Since these buildings are selected to be representative of the vast majority of buildings with wide beams that were constructed in Spain without accounting for any seismic consideration, our conclusions can be extrapolated to a broader scenario.
Resumo:
This paper presents a theoretical framework intended to accommodate circuit devices described by characteristics involving more than two fundamental variables. This framework is motivated by the recent appearance of a variety of so-called mem-devices in circuit theory, and makes it possible to model the coexistence of memory effects of different nature in a single device. With a compact formalism, this setting accounts for classical devices and also for circuit elements which do not admit a two-variable description. Fully nonlinear characteristics are allowed for all devices, driving the analysis beyond the framework of Chua and Di Ventra We classify these fully nonlinear circuit elements in terms of the variables involved in their constitutive relations and the notions of the differential- and the state-order of a device. We extend the notion of a topologically degenerate configuration to this broader context, and characterize the differential-algebraic index of nodal models of such circuits. Additionally, we explore certain dynamical features of mem-circuits involving manifolds of non-isolated equilibria. Related bifurcation phenomena are explored for a family of nonlinear oscillators based on mem-devices.
Resumo:
The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require threedimensional coupled vehicle-bridge models, wheree consideration of wheel to rail contact is a key aspect. Furthermore, an adequate evaluation of safety of rail traffic requires nonlinear models. A nonlinear coupled model is proposed here for vehicle-structure vertical and lateral dynamics. Vehicles are considered as fully three-dimensional multibody systems including gyroscopic terms and large rotation effects. The bridge structure is modeled by means of finite elements which may be of beam, shell or continuum type and may include geometric or material nonlinearities. The track geometry includes distributed track alignment irregularities. Both subsystems (bridge and vehicles) are described with coordinates in absolute reference frames, as opposed to alternative approaches which describe the multibody system with coordinates relative to the base bridge motion. The wheelrail contact employed is a semi-Hertzian model based on realistic wheel-rail profiles. It allows a detailed geometrical description of the contact patch under each wheel including multiple-point contact, flange contact and uplift. Normal and tangential stresses in each contact are integrated at each time-step to obtain the resultant contact forces. The models have been implemented within an existing finite element analysis software with multibody capabilities, Abaqus (Simulia Ltd., 2010). Further details of the model are presented in Antolín et al. (2012). Representative applications are presented for railway vehicles under lateral wind action on laterally compliant viaducts, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle.
Resumo:
Advanced optical modulation format polarization-division multiplexed quadrature phase shift keying (PDM-QPSK) has become a key ingredient in the design of 100 and 200-Gb/s dense wavelength-division multiplexed (DWDM) networks. The performance of this format varies according to the shape of the pulses employed by the optical carrier: non-return to zero (NRZ), return to zero (RZ) or carrier-suppressed return to zero (CSRZ). In this paper we analyze the tolerance of PDM-QPSK to linear and nonlinear optical impairments: amplified spontaneous emission (ASE) noise, crosstalk, distortion by optical filtering, chromatic dispersion (CD), polarization mode dispersion (PMD) and fiber Kerr nonlinearities. RZ formats with a low duty cycle value reduce pulse-to-pulse interaction obtaining a higher tolerance to CD, PMD and intrachannel nonlinearities.
Resumo:
In this work, we study the bilateral control of a nonlinear teleoperator system with constant delay, proposes a control strategy by state convergence, which directly connect the local and remote manipulator through feedback signals of position and speed. The control signal allows the remote manipulator follow the local manipulator through the state convergence even if it has a delay in the communication channel. The bilateral control of the teleoperator system considers the case when the human operator applies a constant force on the local manipulator and when the interaction of the remote manipulator with the environment is considered passive. The stability analysis is performed using functional of Lyapunov-Krasovskii, it showed that using a control algorithm by state convergence for the case with constant delay, the nonlinear local and remote teleoperation system is asymptotically stable, also speeds converge to zero and position tracking is achieved.
Resumo:
In this work, we proposes a control strategy that allows the remote manipulator follow the local manipulator through the state convergence even if it has a delay in the communication channel. The bilateral control of the teleoperator system considers the case were the human operator applies a constant force on the local manipulator and when the interaction of the remote manipulator with the environment is considered passive. The stability analysis was performed using Lyapunov- Krasovskii functional, it showed for the case with constant delay, that using a proposed control algorithm by state convergence resulted in asymptotically stable, local and remote the nonlinear teleoperation system.
Resumo:
We propose a novel control scheme for bilateral teleoperation of n degree-of-freedom (DOF) nonlinear robotic systems with time-varying communication delay. A major contribution from this work lies in the demonstration that the structure of a state convergence algorithm can be also applied to nth-order nonlinear teleoperation systems. By choosing a Lyapunov Krasovskii functional, we show that the local-remote teleoperation system is asymptotically stable. The time delay of communication channel is assumed to be unknown and randomly time varying, but the upper bounds of the delay interval and the derivative of the delay are assumed to be known.
Resumo:
In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185-1191, 2010) and Elaskar et al. (Physica A. 390:2759-2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation {Mathematical expression}, where {Mathematical expression} is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases {Mathematical expression} can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data
Resumo:
We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude