913 resultados para NONELECTROACTIVE CATIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho teve como objetivos a produção, caracterização e aplicação de microelétrodos (MEs) de diamante como sensores amperométricos e potenciométricos em sistemas de corrosão nos quais a agressividade do meio e a presença de produtos de corrosão, constituem obstáculos que podem diminuir o desempenho, ou inviabilizar a utilização, de outros tipos de sensores. Os microeléctrodos são baseados em filmes finos de diamante dopado com boro (BDD – Boron Doped Diamond) depositados sobre fios de tungsténio afiados, através do método de deposição química a partir da fase vapor, assistida por filamento quente (HFCVD – Hot Filament Chemical Vapor Deposition). A otimização das diversas etapas de fabricação dos MEs deu origem ao desenvolvimento de um novo sistema de afiamento eletroquímico para obtenção destes fios e a várias opções para a obtenção dos filmes de diamante condutor e seu isolamento com resinas para exposição apenas da ponta cilíndrica. A qualidade cristalina dos filmes de diamante foi avaliada por espectroscopia de Raman. Esta informação foi complementada com uma caracterização microestrutural dos filmes de diamante por microscopia eletrónica de varrimento (SEM), em que se fez a identificação da tipologia dos cristais como pertencendo às gamas de diamante nanocristalino ou microcristalino. Os filmes de BDD foram utilizados na sua forma não modificada, com terminações em hidrogénio e também com modificação da superfície através de tratamentos de plasma RF de CF4 e O2 indutores de terminações C-F no primeiro caso e de grupos C=O, C-O-C e C-OH no segundo, tal como determinado por XPS. A caracterização eletroquímica dos MEs não modificados revelou uma resposta voltamétrica com elevada razão sinal/ruído e baixa corrente capacitiva, numa gama de polarização quasi-ideal com extensão de 3 V a 4 V, dependente dos parâmetros de crescimento e pós-tratamentos de superfície. Estudou-se a reversibilidade de algumas reações heterogéneas com os pares redox Fe(CN)6 3-/4- e FcOH0/+ e verificou-se que a constante cinética, k0, é mais elevada em elétrodos com terminações em hidrogénio, nos quais não se procedeu a qualquer modificação da superfície. Estes MEs não modificados foram também testados na deteção de Zn2+ onde se observou, por voltametria cíclica, que a detecção da redução deste ião é linear numa escala log-log na gama de 10-5-10-2 M em 5 mM NaCl. Realizaram-se também estudos em sistemas de corrosão modelares, em que os microeléctrodos foram usados como sensores amperométricos para mapear a distribuição de oxigénio e Zn2+ sobre um par galvânico Zn-Fe, com recurso a um sistema SVET (Scanning Vibrating Electrode Technique). Foi possível detetar, com resolução lateral de 100 μm, um decréscimo da concentração de O2 junto a ambos os metais e produção de catiões de zinco no ânodo. Contudo verificou-se uma significativa deposição de zinco metálico na superfície dos ME utilizados. Os MEs com superfície modificada por plasma de CF4 foram testados como sensores de oxigénio dissolvido. A calibração dos microeléctrodos foi efetuada simultaneamente por voltametria cíclica e medição óptica através de um sensor de oxigénio comercial. Determinou-se uma sensibilidade de ~0.1422 nA/μM, com um limite de deteção de 0.63 μM. Os MEs modificados com CF4 foram também testados como sensores amperométricos com os quais se observou sensibilidade ao oxigénio dissolvido em solução, tendo sido igualmente utilizados durante a corrosão galvânica de pares Zn-Fe. Em alguns casos foi conseguida sensibilidade ao ião Zn2+ sem que o efeito da contaminação superficial com zinco metálico se fizesse sentir. Os microeléctrodos tratados em plasma de CF4 permitem uma boa deteção da distribuição de oxigénio, exibindo uma resposta mais rápida que os não tratados além de maior estabilidade de medição e durabilidade. Nos MEs em que a superfície foi modificada com plasma de O2 foi possível detetar, por cronopotenciometria a corrente nula, uma sensibilidade ao pH de ~51 mV/pH numa gama de pH 2 a pH 12. Este comportamento foi associado à contribuição determinante de grupos C-O e C=O, observados por XPS com uma razão O/C de 0,16. Estes MEs foram igualmente testados durante a corrosão galvânica do par Zn-Fe onde foi possível mapear a distribuição de pH associada ao desenvolvimento de regiões alcalinas causadas pela redução do oxigénio, acima da região catódica, e de regiões ácidas decorrentes da dissolução anódica do ânodo de zinco. Com o par galvânico imerso em 50 mM NaCl registou-se uma variação de pH aproximadamente entre 4,8 acima do ânodo de zinco a 9,3 sobre o cátodo de ferro. A utilização pioneira destes MEs como sensores de pH é uma alternativa promissora aos elétrodos baseados em membranas seletivas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid oxide fuel (SOFCs) and electrolyzer (SOECs) cells have been promoted as promising technologies for the stabilization of fuel supply and usage in future green energy systems. SOFCs are devices that produce electricity by the oxidation of hydrogen or hydrocarbon fuels with high efficiency. Conversely, SOECs can offer the reverse reaction, where synthetic fuels can be generated by the input of renewable electricity. Due to this similar but inverse nature of SOFCs and SOECs, these devices have traditionally been constructed from comparable materials. Nonetheless, several limitations have hindered the entry of SOFCs and SOECs into the marketplace. One of the most debilitating is associated with chemical interreactions between cell components that can lead to poor longevities at high working temperatures and/or depleted electrochemcial performance. Normally such interreactions are countered by the introduction of thin, purely ionic conducting, buffer layers between the electrode and electrolyte interface. The objective of this thesis is to assess if possible improvements in electrode kinetics can also be obtained by modifying the transport properties of these buffer layers by the introduction of multivalent cations. The introduction of minor electronic conductivity in the surface of the electrolyte material has previously been shown to radically enhance the electrochemically active area for oxygen exchange, reducing polarization resistance losses. Hence, the current thesis aims to extend this knowledge to tailor a bi-functional buffer layer that can prevent chemical interreaction while also enhancing electrode kinetics.The thesis selects a typical scenario of an yttria stabilized zirconia electrolyte combined with a lanthanide containing oxygen electrode. Gadolinium, terbium and praseodymium doped cerium oxide materials have been investigated as potential buffer layers. The mixed ionic electronic conducting (MIEC) properties of the doped-cerium materials have been analyzed and collated. A detailed analysis is further presented of the impact of the buffer layers on the kinetics of the oxygen electrode in SOFC and SOEC devices. Special focus is made to assess for potential links between the transport properties of the buffer layer and subsequent electrode performance. The work also evaluates the electrochemical performance of different K2NiF4 structure cathodes deposited onto a peak performing Pr doped-cerium buffer layer, the influence of buffer layer thickness and the Pr content of the ceria buffer layer. It is shown that dramatic increases in electrode performance can be obtained by the introduction of MIEC buffer layers, where the best performances are shown to be offered by buffer layers of highest ambipolar conductivity. These buffer layers are also shown to continue to offer the bifunctional role to protect from unwanted chemical interactions at the electrode/electrolyte interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the past decades it has been a worldwide concern to reduce the emission of harmful gases released during the combustion of fossil fuels. This goal has been addressed through the reduction of sulfur-containing compounds, and the replacement of fossil fuels by biofuels, such as bioethanol, produced in large scale from biomass. For this purpose, a new class of solvents, the Ionic Liquids (ILs), has been applied, aiming at developing new processes and replacing common organic solvents in the current processes. ILs can be composed by a large number of different combinations of cations and anions, which confer unique but desired properties to ILs. The ability of fine-tuning the properties of ILs to meet the requirements of a specific application range by mixing different cations and anions arises as the most relevant aspect for rendering ILs so attractive to researchers. Nonetheless, due to the huge number of possible combinations between the ions it is required the use of cheap predictive approaches for anticipating how they will act in a given situation. Molecular dynamics (MD) simulation is a statistical mechanics computational approach, based on Newton’s equations of motion, which can be used to study macroscopic systems at the atomic level, through the prediction of their properties, and other structural information. In the case of ILs, MD simulations have been extensively applied. The slow dynamics associated to ILs constitutes a challenge for their correct description that requires improvements and developments of existent force fields, as well as larger computational efforts (longer times of simulation). The present document reports studies based on MD simulations devoted to disclose the mechanisms of interaction established by ILs in systems representative of fuel and biofuels streams, and at biomass pre-treatment process. Hence, MD simulations were used to evaluate different systems composed of ILs and thiophene, benzene, water, ethanol and also glucose molecules. For the latter molecules, it was carried out a study aiming to ascertain the performance of a recently proposed force field (GROMOS 56ACARBO) to reproduce the dynamic behavior of such molecules in aqueous solution. The results here reported reveal that the interactions established by ILs are dependent on the individual characteristics of each IL. Generally, the polar character of ILs is deterministic in their propensity to interact with the other molecules. Although it is unquestionable the advantage of using MD simulations, it is necessary to recognize the need for improvements and developments of force fields, not only for a successful description of ILs, but also for other relevant compounds such as the carbohydrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methylamine (MA), TEA+ and water were shown to play a concerted role during the synthesis of two new aluminophosphates IST-1 and IST-2. Both structures start to nucleate after the dramatic change of the gel composition due to preliminary interactions between TEA+ cations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to overcome the problems associated with low water solubility, and consequently low bioavailability of active pharmaceutical ingredients (APIs), herein we explore a modular ionic liquid synthetic strategy for improved APIs. Ionic liquids containing l-ampicillin as active pharmaceutical ingredient anion were prepared using the methodology developed in our previous work, using organic cations selected from substituted ammonium, phosphonium, pyridinium and methylimidazolium salts, with the intent of enhancing the solubility and bioavailability of l-ampicillin forms. In order to evaluate important properties of the synthesized API-ILs, the water solubility at 25 °C and 37 °C (body temperature) as well as octanol–water partition coefficients (Kow's) and HDPC micelles partition at 25 °C were measured. Critical micelle concentrations (CMC's) in water at 25 °C and 37 °C of the pharmaceutical ionic liquids bearing cations with surfactant properties were also determined from ionic conductivity measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O principal objectivo desta dissertação foi avaliar a evolução hidrogeoquímica das águas minerais de Entre‐os‐Rios, para uma melhor compreensão do modelo hidrogeológico conceptual deste sistema hidromineral. Desta forma, foram coligidos diversos dados hidroquímicos, quer das nascentes clássicas (Torre, Curveira, Ardias, Arcos Esquerda e Arcos Direita), quer do furo Barbeitos. Foram compiladas e analisadas oitenta análises hidroquímicas no período 1938‐2012, incluindo características organolépticas (cheiro, cor e turbidez), diversas propriedades físico-químicas (temperatura, pH, condutividade eléctrica, sulfuração, etc), os principais catiões e aniões (bicarbonato, fluoreto, sódio, lítio, etc) e os elementos vestigiários (chumbo, tungsténio, boro, etc). Além disso, foram integrados os dados históricos disponíveis de finais do século XIX e inícios do século XX. Foram igualmente reunidos e discutidos alguns dados isotópicos (oxigénio‐18, deutério e trítio). O recurso hidromineral de Entre‐os‐Rios está condicionado pela litologia e pelas condições tectónicas. As análises químicas revelaram que as águas minerais de Entre‐os‐Rios apresentam uma estabilidade química nos últimos 100 anos. Estas águas são orto‐ a hipertermais, fracamente mineralizadas, de reacção alcalina, sulfídricas, bicarbonatadas sódicas, carbonatadas e muito fluoretadas. Estas características são claramente distintas das águas normais da região. As águas de Entre‐os‐Rios são muito semelhantes às águas minerais de S. Vicente e, em diversos parâmetros, bastante diferentes das águas minerais das Caldas da Saúde. Os dados isotópicos permitiram concluir que as águas de Entre‐os‐Rios têm uma origem meteórica, com um tempo de residência longo no sistema aquífero, e que são, muito provavelmente, submodernas, com uma recarga anterior a 1952. Na região de Entre‐os‐Rios coexistem três sistemas aquíferos, um sistema granítico superficial, livre e um sistema livre a semi‐confinado, ambos com circulação de águas normais, e um sistema aquífero granítico, profundo, confinado, com circulação de água mineral.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cation transporters/channels are key players in a wide range of physiological functions in plants, including cell signaling, osmoregulation, plant nutrition and metal tolerance. The recent identification of genes encoding some of these transport systems has allowed new studies toward further understanding of their integrated roles in plant. This review summarizes recent discoveries regarding the function and regulation of the multiple systems involved in cation transport in plant cells. The role of membrane transport in the uptake, distribution and accumulation of cations in plant tissues, cell types and subcellular compartments is described. We also discuss how the knowledge of inter- and intra-species variation in cation uptake, transport and accumulation as well as the molecular mechanisms responsible for these processes can be used to increase nutrient phytoavailability and nutrients accumulation in the edible tissues of plants. The main trends for future research in the field of biofortification are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eukaryotes contain inorganic polyphosphate (polyP) and acidocalcisomes, which sequester polyP and store amino acids and divalent cations. Why polyP is sequestered in dedicated organelles is not known. We show that polyP produced in the cytosol of yeast becomes toxic. Reconstitution of polyP translocation with purified vacuoles, the acidocalcisomes of yeast, shows that cytosolic polyP cannot be imported, whereas polyP produced by the vacuolar transporter chaperone (VTC) complex, an endogenous vacuolar polyP polymerase, is efficiently imported and does not interfere with growth. PolyP synthesis and import require an electrochemical gradient, probably as a driving force for polyP translocation. VTC exposes its catalytic domain to the cytosol and carries nine vacuolar transmembrane domains. Mutations in the VTC transmembrane regions, which are likely to constitute the translocation channel, block not only polyP translocation but also synthesis. Given that they are far from the cytosolic catalytic domain of VTC, this suggests that the VTC complex obligatorily couples synthesis of polyP to its import in order to avoid toxic intermediates in the cytosol. Sequestration of otherwise toxic polyP might be one reason for the existence of acidocalcisomes in eukaryotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polarized reflectance measurements of the quasi I-D charge-transfer salt (TMTSFh CI04 were carried out using a Martin-Puplett-type polarizing interferometer and a 3He refrigerator cryostat, at several temperatures between 0.45 K and 26 K, in the far infrared, in the 10 to 70 cm- 1 frequency range. Bis-tetramethyl-tetraselena-fulvalene perchlorate crystals, grown electrochemically and supplied by K. Behnia, of dimensions 2 to 4 by 0.4 by 0.2 mm, were assembled on a flat surface to form a mosaic of 1.5 by 3 mm. The needle shaped crystals were positioned parallel to each other along their long axis, which is the stacking direction of the planar TMTSF cations, exposing the ab plane face (parallel to which the sheets of CI04 anions are positioned). Reflectance measurements were performed with radiation polarized along the stacking direction in the sample. Measurements were carried out following either a fast (15-20 K per minute) or slow (0.1 K per minute) cooling of the sample. Slow cooling permits the anions to order near 24 K, and the sample is expected to be superconducting below 1.2 K, while fast cooling yields an insulating state at low temperatures. Upon the slow cooling the reflectance shows dependence with temperature and exhibits the 28 cm- 1 feature reported previously [1]. Thermoreflectance for both the 'slow' and 'fast' cooling of the sample calculated relative to the 26 K reflectance data indicates that the reflectance is temperature dependent, for the slow cooling case only. A low frequency edge in the absolute reflectance is assigned an electronic origin given its strong temperature dependence in the relaxed state. We attribute the peak in the absolute reflectance near 30 cm-1 to a phonon coupled to the electronic background. Both the low frequency edge and the 30 cm-1 feature are noted te shift towards higher frequcncy, upon cntering the superconducting state, by an amount of the order of the expected superconducting energy gap. Kramers-Kronig analysis was carried out to determine the optical conductivity for the slowly cooled sample from the measured reflectance. In order to do so the low frequency data was extrapolated to zero frequency using a Hagen-Ru bens behaviour, and the high frequency data was extended with the data of Cao et al. [2], and Kikuchi et al. [3]. The real part of the optical conductivity exhibits an asymmetric peak at 35 cm-1, and its background at lower frequencies seems to be losing spectral weight with lowering of the temperature, leading us to presume that a narrow peak is forming at even lower frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this thesis was to demonstrate the potential of fast atom bombardment mass spectrometry (FABMS) as a probe of condensed phase systems and its possible uses for the study of hydrogen bonding. FABMS was used to study three different systems. The first study was aimed at investigating the selectivity of the ligand tris(3,6-dioxaheptyl) amine (tdoha) for the alkali metal cations. FABMS results correlated well with infrared and nmr data. Systems where a crown ether competed with tdoha for a given alkali metal cation were also investigated by fast atom bombardment. The results were found to correlate with the cation affinity of tdoha and the ability of the crown ether to bind the cation. In the second and third studies, H-bonded systems were investigated. The imidazole-electron donor complexes were investigated and FABMS results showed the expected H-bond strength of the respective complexes. The effects of concentration, liquid matrix, water content, deuterium exchange, and pre-ionization of the complex were also investigated. In the third system investigated, the abundance of the diphenyl sulfone-ammonium salt complexes (presumably H-bonded) in the FABMS spectrum were found to correlate with qualitative considerations such as steric hindrance and strength of ion pairs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects. of moisture, cation concentration, dens ity , temper~ t ure and grai n si ze on the electrical resistivity of so il s are examined using laboratory prepared soils. An i nexpen si ve method for preparing soils of different compositions was developed by mixing various size fractions i n the laboratory. Moisture and cation c oncentration are related to soil resistivity by powe r functions, whereas soil resistiv ity and temperature, density, Yo gravel, sand , sil t, and clay are related by exponential functions . A total of 1066 cases (8528 data) from all the experiments were used in a step-wise multiple linear r egression to determine the effect of each variable on soil resistivity. Six variables out of the eight variables studied account for 92.57/. of the total variance in so il resistivity with a correlation coefficient of 0.96. The other two variables (silt and gravel) did not increase the · variance. Moisture content was found to be - the most important Yo clay. variable- affecting s oil res istivi ty followed by These two variables account for 90.81Yo of the total variance in soil resistivity with a correlation ~oefficient ·.of 0 . 95. Based on these results an equation to ' ~~ed{ ct soil r esist ivi ty using moisture and Yo clay is developed . To t est the predicted equation, resistivity measurements were made on natural soils both in s i tu a nd i n the laboratory. The data show that field and laboratory measurements are comparable. The predicted regression line c losely coinciqes with resistivity data from area A and area B soils ~clayey and silty~clayey sands). Resistivity data and the predicted regression line in the case of c layey soils (clays> 40%) do not coincide, especially a t l ess than 15% moisture. The regression equation overestimates the resistivity of so i l s from area C and underestimates for area D soils. Laboratory prepared high clay soils give similar trends. The deviations are probably caused by heterogeneous distribution of mo i sture and difference in the type o f cl ays present in these soils.