969 resultados para NICKEL-PHOSPHIDE CATALYSTS
Resumo:
Cu/CeO2, Pd/CeO2, and CuPd/CeO2 catalysts were prepared and their reduction followed by in-situ XPS in order to explore promoter and support interactions in a bimetallic CuPd/CeO2 catalyst effective for the oxygen-assisted water-gas-shift (OWGS) reaction. Mutual interactions between Cu, Pd, and CeO2 components all affect the reduction process. Addition of only 1 wt% Pd to 30 wt% Cu/CeO2 greatly enhances the reducibility of both dispersed CuO and ceria support. In-vacuo reduction (inside XPS chamber) up to 400 °C results in a continuous growth of metallic copper and Ce3+ surface species, although higher temperatures results in support reoxidation. Supported copper in turn destabilizes metallic palladium metal with respect to PdO, this mutual perturbation indicating a strong intimate interaction between the Cu–Pd components. Despite its lower intrinsic reactivity towards OWGS, palladium addition at only 1 wt% loading significantly improved CO conversion in OWGS reaction over a monometallic 30 wt% Cu/CeO2 catalysts, possibly by helping to maintain Cu in a reduced state during reaction.
Resumo:
A series of alkali-doped metal oxide catalysts were prepared and evaluated for activity in the transesterification of rapeseed oil to biodiesel. Of those evaluated, LiNO3/CaO, NaNO3/CaO, KNO3/CaO and LiNO3/MgO exhibited >90% conversion in a standard 3 h test. There was a clear correlation between base strength and activity. These catalysts appeared to be promising candidates to replace conventional homogeneous catalysts for biodiesel production as the reaction times are low enough to be practical in continuous processes and the preparations are neither prohibitively difficult nor costly. However, metal leaching from the catalyst was detected, and this resulted in some homogeneous activity. This would have to be resolved before these catalysts would be viable for large-scale biodiesel production facilities.
Resumo:
Biodiesel production is a very promising area due to the relevance that it is an environmental-friendly diesel fuel alternative to fossil fuel derived diesel fuels. Nowadays, most industrial applications of biodiesel production are performed by the transesterification of renewable biological sources based on homogeneous acid catalysts, which requires downstream neutralization and separation leading to a series of technical and environmental problems. However, heterogeneous catalyst can solve these issues, and be used as a better alternative for biodiesel production. Thus, a heuristic diffusion-reaction kinetic model has been established to simulate the transesterification of alkyl ester with methanol over a series of heterogeneous Cs-doped heteropolyacid catalysts. The novelty of this framework lies in detailed modeling of surface reacting kinetic phenomena and integrating that with particle-level transport phenomena all the way through to process design and optimisation, which has been done for biodiesel production process for the first time. This multi-disciplinary research combining chemistry, chemical engineering and process integration offers better insights into catalyst design and process intensification for the industrial application of Cs-doped heteropolyacid catalysts for biodiesel production. A case study of the transesterification of tributyrin with methanol has been demonstrated to establish the effectiveness of this methodology.
Resumo:
Biodiesel production is a very promising area due to the relevance that it is an environmental-friendly diesel fuel alternative to fossil fuel derived diesel fuels. Nowadays, most industrial applications of biodiesel production are performed by the transesterification of renewable biological sources based on homogeneous acid catalysts, which requires downstream neutralization and separation leading to a series of technical and environmental problems. However, heterogeneous catalyst can solve these issues, and be used as a better alternative for biodiesel production. Thus, a heuristic diffusion-reaction kinetic model has been established to simulate the transesterification of alkyl ester with methanol over a series of heterogeneous Cs-doped heteropolyacid catalysts. The novelty of this framework lies in detailed modeling of surface reacting kinetic phenomena and integrating that with particle-level transport phenomena all the way through to process design and optimisation, which has been done for biodiesel production process for the first time. This multi-disciplinary research combining chemistry, chemical engineering and process integration offers better insights into catalyst design and process intensification for the industrial application of Cs-doped heteropolyacid catalysts for biodiesel production. A case study of the transesterification of tributyrin with methanol has been demonstrated to establish the effectiveness of this methodology.
Resumo:
Biodiesel is a renewable substitute fuel for petroleum diesel fuel which is made from nontoxic, biodegradable, renewable sources such as refined and used vegetable oils and animal fats. Biodiesel is produced by transesterification in which oil or fat is reacted with a monohydric alcohol in the presence of a catalyst. The process of transesterification is affected by the mode of reaction, molar ratio of alcohol to oil, type of alcohol, nature and amount of catalysts, reaction time, and temperature. Various studies have been carried out using different oils as the raw material and different alcohols (methanol, ethanol, butanol), as well as different catalysts, notably homogeneous ones such as sodium hydroxide, potassium hydroxide, sulfuric acid, and supercritical fluids or enzymes such as lipases. Recent research has focused on the application of heterogeneous catalysts to produce biodiesel, because of their environmental and economic advantages. This paper reviews the literature regarding both catalytic and noncatalytic production of biodiesel. Advantages and disadvantages of different methods and catalysts used are discussed. We also discuss the importance of developing a single catalyst for both esterification and transesterification reactions.
Resumo:
Pd does it alone : Tailored heterogeneous catalysts offer exciting, alternative, clean technologies for regioselective molecular transformations. A mesoporous alumina support stabilizes atomically dispersed PdII surface sites (see picture, C light gray, O red, Pd dark gray, Al purple, H white), thereby dramatically enhancing catalytic performance in the aerobic selective oxidation of alcohols.
Resumo:
Pd(II) and Pd(0) catalysts supported onto titanate nanotubes (H2Ti3O7) were prepared by an ion-exchange technique. The catalysts are characterised by narrow size distribution of metal nanoparticles on the external surface of the nanotubes. Pd(II) catalysts show high selectivity toward double-bond migration reaction versus hydrogenation in linear olefins. The catalytic activity exhibits a volcano-type dependence on the metal loading, with the maximum activity observed at ca. 8 wt%. The Pd(II) was shown to be rapidly reduced to Pd(0) by appropriate choice of solvent. Prereduced Pd(0) catalysts were found to be less active toward double-bond migration and more selective toward hydrogenation. The DBM reaction was faster in protic solvents, such as methanol or ethanol. © 2006 Elsevier Inc. All rights reserved.
Resumo:
A series of insoluble heteropolytungstate (H3PW12O40 HPW) salts, CsxH3−xPW12O40 (x=0.9–3x=0.9–3), were synthesized and characterized using a range of bulk and surface sensitive probes including N2 porosimetry, powder XRD, FTIR, XPS, 31P MAS NMR, and NH3 calorimetry. Materials with Cs content in the range x=2.0–2.7x=2.0–2.7 were composed of dispersed crystallites with surface areas ∼100 m2 g−1 and high Brönsted acid strengths [ΔH0ads(NH3)=−150 kJmol−1], similar to the parent heteropolyacid. The number of accessible surface acid sites probed by α -pinene isomerization correlated well with those determined by NH3 adsorption calorimetry and surface area measurements. CsxH3−xPW12O40 were active toward the esterification of palmitic acid and transesterification of tributyrin, important steps in fatty acid and ester processing for biodiesel synthesis. Optimum performance occurs for Cs loadings of x=2.0–2.3x=2.0–2.3, correlating with the accessible surface acid site density. These catalysts were recoverable with no leaching of soluble HPW.
Resumo:
The nature of the active site in the Pd-catalysed aerobic selective oxidation of cinnamyl and crotyl alcohols has been directly probed by bulk and surface X-ray techniques. The importance of high metal dispersions and the crucial role of surface palladium oxide have been identified. © The Royal Society of Chemistry 2006.
Resumo:
Highly dispersed H3PW12O40/SiO2 catalysts with loadings between 3.6 and 62.5 wt% have been synthesised and characterised. The formation of a chemically distinct interfacial HPW species is identified by XPS, attributed to pertubation of W atoms within the Keggin cage in direct contact with the SiO2 surface. EXAFS confirms the Keggin unit remains intact for all loadings, while NH3 adsorption calorimetery reveals the acid strength >0.14 monolayers of HPW is loading invariant with initial ΔHads = −164 kJ mol−1. Lower loading catalysts exhibit weaker acidity which is attributed to an inability of highly dispersed clusters to form crystalline water. For reactions involving non-polar hydrocarbons the interfacial species where the accessible tungstate is highest confer the greatest reactivity, while polar chemistry is favoured by higher loadings which can take advantage of the H3PW12O40 pseudo-liquid phase available within supported multilayers. © the Owner Societies 2006.
Resumo:
A series of Rh2/AlO3 catalysts have been prepared using untreated or pre-sulphated alumina supports. The effect of support sulphation on catalyst activity towards propene and propane combustion has been explored as a function of Rh loading. Light-off temperatures for the total oxidation of both hydrocarbons decrease with increasing Rh content, associated with a transition from small oxidic clusters to large metallic Rh particles. Sulphate promotes both propene and propane combustion equally, with the magnitude of promotion exhibiting only a weak loading dependence. Enhanced catalytic performance is accompanied by Rh reduction and sintering. © 2006 Elsevier B.V. All rights reserved.
Resumo:
A series of zirconium phosphate supported WOx solid acid catalysts with W loadings from 1–25 wt% have been prepared on high surface area zirconium phosphate by a surface grafting method. Catalysts were characterized by N2 adsorption, FTIR, Raman, UV-Vis, 31P MAS NMR, pyridine TPD and X-ray methods. Spectroscopic measurements suggest a Keggin-type structure forms on the surface of zirconium phosphate as a ([triple bond, length as m-dash]ZrOH2+)(ZrPW11O405−) species. All catalysts show high activity in palmitic acid esterification with methanol. These materials can be readily separated from the reaction system for re-use, and are resistant to leaching of the active heteropolyacid, suggesting potential industrial applications in biodiesel synthesis. © The Royal Society of Chemistry 2006.
Resumo:
Highly active mesoporous SO4/ZrO2/HMS (hexagonal mesoroporous silica) solid acid catalysts with tuneable sulphated zirconia (SZ) content have been prepared for the liquid phase isomerisation of α-pinene. The mesoporous HMS framework is preserved during the grafting process as evidenced by the X-ray diffraction (XRD) and porosimetry with all SO4/ZrO2/HMS materials possessing average pore-diameters ∼20 Å. XRD confirms the presence of a stabilized tetragonal phase of nanoparticulate ZrO2, with no evidence for zirconia phase separation or the formation of discrete crystallites, consistent with a uniform and highly dispersed SZ coating. The activity towards α-pinene isomerisation scales linearly with Zr loading, while the specific activities are an order of magnitude greater than attainable by conventional methodologies (∼1 versus 0.08 mol h−1 g Zr−1).
Resumo:
A series of [Mg(1−x)Alx(OH)2]x+(CO3)x/n2− hydrotalcite materials with compositions over the range x = 0.25–0.55 have been synthesised using an alkali-free coprecipitation route. All materials exhibit XRD patterns characteristic of the hydrotalcite phase with a steady lattice expansion observed with increasing Mg content. XPS measurements reveal a decrease in both the Al and Mg photoelectron binding energies with Mg incorporation which correlates with the increased intra-layer electron density. All materials are effective catalysts for the liquid phase transesterification of glyceryl tributyrate with methanol for biodiesel production. The rate increases steadily with Mg content, with the Mg rich Mg2.93Al catalyst an order of magnitude more active than MgO, with pure Al2O3 being completely inert. The rate of reaction also correlates with intralayer electron density which can be associated with increased basicity.© 2005 Elsevier B.V. All rights reserved.
Resumo:
Fast X-ray photoelectron spectroscopy reveals efficient C–Cl activation of 1,1,1-trichloroethane occurs over platinum surfaces at 150 K, and in the presence of hydrogen, sustained ambient temperature dehydrochlorination to HCl and ethane is possible over supported Pt/Al2O3 catalysts.