968 resultados para N-domain angiotensin- converting enzyme
Resumo:
The crystal structure of pyruvate phosphate dikinase, a histidyl multiphosphotransfer enzyme that synthesizes adenosine triphosphate, reveals a three-domain molecule in which the phosphohistidine domain is flanked by the nucleotide and the phosphoenolpyruvate/pyruvate domains, with the two substrate binding sites approximately 45 angstroms apart. The modes of substrate binding have been deduced by analogy to D-Ala-D-Ala ligase and to pyruvate kinase. Coupling between the two remote active sites is facilitated by two conformational states of the phosphohistidine domain. While the crystal structure represents the state of interaction with the nucleotide, the second state is achieved by swiveling around two flexible peptide linkers. This dramatic conformational transition brings the phosphocarrier residue in close proximity to phosphoenolpyruvate/pyruvate. The swiveling-domain paradigm provides an effective mechanism for communication in complex multidomain/multiactive site proteins.
Resumo:
Point mutations were selectively introduced into a cDNA for guinea pig estrogen sulfotransferase (gpEST); each construct was then expressed in Chinese hamster ovary K1 cells. The molecular site chosen for study is a conserved GXXGXXK sequence that resembles the P-loop-type nucleotide-binding motif for ATP- and GTP-binding proteins and is located near the C terminus of all steroid and phenol(aryl) sulfotransferases for which the primary structures are known. Preliminary experiments demonstrated that the GXXGXXK motif is essential for binding the activated sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The present study was undertaken to ascertain the relative importance of each individual residue of the motif. While the mutation of a single motif residue had little effect on the interaction between gpEST and PAPS as determined by kinetic analysis and photoaffinity labeling, the mutation of any two residues in concert resulted in an approximate 10-fold increase in the Km for PAPS and reduced photoaffinity labeling. The mutation of all three motif residues resulted in an inactive enzyme and complete loss of photoaffinity labeling. Interestingly, several mutants also displayed a striking effect on the Km for the steroid substrate; double mutants, again, demonstrated greater perturbations (8- to 28-fold increase) than did single mutants. Unexpectedly, whereas the mutation of nonmotif residues had a negligible effect on the Km for PAPS, a marked increase in the Km for the estrogen substrate ( > 30-fold) was noted. On the basis of these findings, it is concluded that the sequence GISGDWKN within the C-terminal domain of gpEST represents a critical component of the active site.
Resumo:
An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 microM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides.
Resumo:
In Escherichia coli and Salmonella typhimurium it has been shown that selenophosphate serves as the selenium donor for the conversion of seryl-tRNA to selenocysteyl-tRNA and for the synthesis of 2-selenouridine, a modified nucleoside present in tRNAs. Although selenocysteyl-tRNA also is formed in eukaryotes and is used for the specific insertion of selenocysteine into proteins, the precise mechanism of its biosynthesis from seryl-tRNA in these systems is not known. Because selenophosphate is extremely oxygen labile and difficult to identify in biological systems, we used an immunological approach to detect the possible presence of selenophosphate synthetase in mammalian tissues. With antibodies elicited to E. coli selenophosphate synthetase the enzyme was detected in extracts of rat brain, liver, kidney, and lung by immunoblotting. Especially high levels were detected in Methanococcus vannielii, a member of the domain Archaea, and the enzyme was partially purified from this source. It seems likely that the use of selenophosphate as a selenium donor is widespread in biological systems.
Resumo:
The products of the recB and recC genes are necessary for conjugal recombination and for repair of chromosomal double-chain breaks in Escherichia coli. The recD gene product combines with the RecB and RecC proteins to comprise RecBCD enzyme but is required for neither recombination nor repair. On the contrary, RecBCD enzyme is an exonuclease that inhibits recombination by destroying linear DNA. The RecD ejection model proposes that RecBCD enzyme enters a DNA duplex at a double-chain end and travels destructively until it encounters the recombination hot spot sequence chi. Chi then alters the RecBCD enzyme by weakening the affinity of the RecD subunit for the RecBC heterodimer. With the loss of the RecD subunit, the resulting protein, RecBC(D-), becomes deficient for exonuclease activity and proficient as a recombinagenic helicase. To test the model, genetic crosses between lambda phage were conducted in cells containing chi on a nonhomologous plasmid. Upon delivering a double-chain break to the plasmid, lambda recombined as if the cells had become recD mutants. The ability of chi to alter lambda recombination in trans was reversed by overproducing the RecD subunit. These results indicate that chi can influence a recombination act without directly participating in it.
Resumo:
Glucose dehydrogenase (EC 1.1.1.47) from the halophilic Archaeon Haloferax mediterranei belongs to the medium-chain alcohol dehydrogenase superfamily and requires a zinc ion for catalysis. The zinc ion is coordinated by a histidine, a water molecule and two other ligands from the protein or the substrate, which vary during the catalytic cycle of the enzyme. In many enzymes of this superfamily one of the zinc ligands is commonly cysteine, which is replaced by an aspartate residue at position 38 in the halophilic enzyme. This change has been only observed in glucose dehydrogenases from extremely halophilic microorganisms belonging to the Archaea Domain. This paper describes biochemical studies and structural comparisons to analyze the role of sequence differences between thermophilic and halophilic glucose dehydrogenases which contain a zinc ion within the protein surrounded by three ligands. Whilst the catalytic activity of the D38C GlcDH mutant is reduced, its thermal stability is enhanced, consistent with the greater structural similarity between this mutant and the homologous thermophilic enzyme from Thermoplasma acidophilum.
Resumo:
Mode of access: Internet.
Resumo:
Type-written manuscript.
Resumo:
Reuse of record except for individual research requires license from Congressional Information Service, Inc.
Resumo:
"A comprehensive digest of the knowledge of timber scattered over seventeen volumes of Building World".
Resumo:
Mode of access: Internet.
Resumo:
Pritzel 7544 (1810 edition)
Resumo:
"List of literature referred to": p. 157-174.
Resumo:
Includes bibliography.
Resumo:
Originally issued July 1935.