1000 resultados para Multifrequency Phase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The open circuit potentials of the galvanic cell,Pt (or Au)¦(Ar + H2S + H2)primeparCaS + ZrO2(CaO)par (Ar + H2S+ H2)Prime£t (or Au) has been measured in the temperature range 1000 to 1660 K and PH2S:PH 2 ratios from 1.73×10–5 to 2.65×10–1. The solid electrolyte consists of a dispersion of calcium sulphide in a matrix of calcia-stabilized zirconia. The surface of the electrolyte is coated with a thin layer of calcium sulphide to prevent the formation of water vapour by reaction of hydrogen sulphide with calcium oxide or zirconia present in the electrolyte. The use of a lsquopoint electrodersquo with a catalytically active tip was necessary to obtain steady emfs. At low temperatures and high sulphur potentials the emfs agreed with the Nernst equation. Deviations were observed at high temperatures and low sulphur potentials, probably due to the onset of significant electronic conduction in the oxide matrix of the electrolyte. The values of oxygen and sulphur potentials at which the electronic conductivity is equal to ionic conductivity in the two-phase electrolyte have been evaluated from the emf response of the cell. The sulphide-oxide electrolyte is unsuitable for sulphur potential measurements in atmospheres with high oxygen potentials, where oxidation of calcium sulphide may be expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermodynamic properties of liquid unsaturated Co--O solutions have been determined by electrochemical measurements using (Y sub 2 O sub 3 )ThO sub 2 as solid electrolyte. The cell can be represented as, Pt. MoO sub 2 + Mo | (Y sub 2 O sub 3 )ThO sub 2 | O sub Co , tungsten, Pt, Emf of the cell was measured as a function of oxygen concentration in liquid Co at 1798, 1873 and 1973K. Least-mean squares regression analysis of the experimental data gives for the free energy of solution of diatomic oxygen in liquid Co Delta G exp 0 sub O(Co) = --84935--7.61 T ( plus/minus 400) J/g-atom and self interaction parameter for oxygen epsilon exp O sub O = --97240/T + 40.52 ( plus/minus 1) where the standard state for O is an infinitely dilute solution in which the activity is equal to atomic percent. The present data are discussed in comparison with those reported in the literature and the phase diagram for the Co--O system. 18 ref.--AA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tie-lines delineating equilibria between CoO-NiO and Co-Ni solid solutions in the ternary Co-Ni-O system at 1373 K have been determined by electron microprobe andedax point count analysis of the oxide phase equilibrated with the alloy. The oxygen potentials corresponding to the tie-line compositions have been measured using a solid oxide galvanic cell with calcia-stabilized zirconia electrolyte and Ni + NiO reference electrode. Activities in the metallic and oxide solid solution have been derived using a new Gibbs-Duhem integration technique. Both phases exhibit small positive deviations from ideality; the values ofG E/X 1 X 2 are 2640 J mol−1 for the metallic phase and 2870 J mol−1 for the oxide solid solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a simple and low cost fabrication approach using extended printed circuit board processing techniques for an electrostatically actuated phase shifter on a common microwave laminate. This approach uses 15 mu m thin copper foils for realizing the bridge structures as well as for a spacer. A polymeric thin film deposited by spin coating and patterned using lithographic process is used as a dielectric layer to improve the reliability of the device. The prototype of the phase shifter for X-band operation is fabricated and tested for electrical and electromechanical performance parameters. The realized devices have a figure of merit of 70 degrees/dB for a maximum applied bias potential of 85 V. Since these phase shifters can be conveniently fabricated directly on microwave substrates used for feed distribution networks of phased arrays, the overall addition in cost, dimensions and processing for including these phase shifters in these arrays is minimal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tie-lines delineating equilibria between CoF2-NiF2 and Co-Ni solid solutions in the ternary Co-Ni-F system at 1373 K have been determined by electron microprobe and EDAX point count analysis of the equilibrated phases. Activities in the fluoride solid solution have been derived from the knowledge of activitycomposition relation in the metallic solid solution and tie-line data,using a modified form of the Gibbs-Duhem integration. The fluorine potentials corresponding to the tie-line compositions have been calculated.The excess Gibbs' energy of mixing for the fluoride solid solution derived from the present data can be represented by the expression

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solid state galvanic cell incorporating yttria-stabilized zirconia electrolyte and ruthenium(IV) oxide electrodes has been used to measure the equilibrium chemical potential of oxygen corresponding to the decomposition of CuCrO4 in the range 590–760 K. For the reaction CuO(tenorite) + CuCr2O4(spinel) + 1.5O2(g)→2CuCrO4(orth), ΔGXXX = −183540 + 249.6T(±900) J mol−1. The decomposition temperature of CuCrO4 in pure oxygen at a pressure of 1.01 × 105 Pa is 735(±1) K. By combining the results obtained in this study with data on the Gibbs energy of formation of CuCr2O4 and CuCrO2 reported earlier, the standard Gibbs energy of formation of CuCrO4 and the phase relations in the system Cu-Cr-O at temperatures below 735 K have been deduced. Electron microscopic studies have indicated that the decomposition of CuCrO4 to CuCr2O4 is topotactic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase relations in the systems SrO-Y2O3-CuO-O2 and CaO-Y2O3-CuO-O2 at 1173 K were established by equilibrating different compositions in flowing oxygen gas at a pressure of 1.01 × 105 Pa. The quenched samples were examined by optical microscopy, X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), and electron spin resonance (ESR). In the system SrO-Y2O3-CuO-O2, except for the limited substitution of Y3+ for Sr2+ ions in the ternary oxide Sr14Cu24O41, no new quaternary phase was found to be stable. The compositions corresponding to the solid solution Sr14−xYxCu24O41 and the compound SrCuO2+δ lie above the plane containing SrO, Y2O3, and CuO,displaced towards the oxygen apex. However, in the system CaO-Y203-CuO-O2 at 1173 K, all the condensed phases lie on the plane containing CaO, Y203, and CuO, and a new quaternary oxide YCa2Cu306.s is present. The quaternary phase has a composition that lies at the center of the nonstoichiometric field of the analogous phase YBa2Cu307_~ in the BaO-Y203-CuO-O2 system. The compound YCa2Cu306.s has the tetragonal structure and does not become superconducting at low temperature. Surprisingly, phase relations in the three systems CaO-Y203-CuO-O2, SrO-Y203-CuO-O2, and BaO-Y203-CuO-O2 are found to be quite different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase relations in the pseudoternary system NiO-CaO-SiO2 at 1373 K are established. The coexisting phases are identified by X-ray diffraction and energy-dispersive X-ray analysis of equilibrated samples. There is only one quaternary oxide CaNiSi2O6 with clinopyroxene structure. The Gibbs energy of formation of CaNiSi2O6 is measured using a solid state galvanic cell incorporating stabilized zirconia as the solid electrolyte in the temperature range of 1000 to 1400 K:Pt, Ni + SiO2 + CaSiO3 + CaNiSi2O6 \ (Y2O3)ZrO2 \ Ni + NiO, Pt From the electromotive force (emf) of the cell, the Gibbs energy of formation of CaNiSi2O6 from NiO, SiO2, and CaSiO3 is obtained. To derive the Gibbs energy of formation of the quaternary oxide from component binary oxides, the free energy of formation of CaSiO, is determined separately using a solid state cell based on single crystal CaF2 as the electrolyte: Pt, O-2, CaO + CaF2 \ CaF2 \ CaSiO3 + SiO2 + CaF2, O-2, Pt The results can be expressed by the following equations: NiO (r.s) + CaO (r.s) + 2SiO(2) (qz) --> CaNiSi2O6 (pyr) Delta G degrees = -115,700 + 10.63T (+/-100) J mol(-1) CaO (r.s) + SiO2 (qz) --> CaSiO3 (wol) Delta G degrees = -90,030 -0.61T (+/-60) J mol(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase relations in the system Dy–Mg–Cl at 1073 K have been established by isothermal equilibration and chemical analysis of quenched samples. Liquid Mg-rich alloy was found to be in equilibrium with molten DyCl2. Therefore, DyCl2 can be synthesized by reduction of MgCl2 with excess of metallic Dy at 1073 K. The Gibbs energy of formation of DyCl2 at 1073 K was evaluated by two different methods. From voltammetric determination of decomposition voltage, the upper limit for the standard Gibbs energy of formation of DyCl2 was estimated to be −505(±20) kJ mol−1. A value of −543(±10) kJ mol−1 was deduced from phase relations using Gibbs–Duhem integration. The value for the standard Gibbs energy of DyCl2 indicates that the Dy2+ ion has a potential capability for reducing TiCl4 to metal titanium. At the same time, Mg is a reductant for Dy3+ produced during the reduction of TiCl4. Thus, it is thermodynamically confirmed that reduction of TiCl4 by magnesium using a reaction mediator in the salt phase is feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard Gibbs energies of formation of SrIrO3, Sr2IrO4 and Sr4IrO6 have been determined in the temperature range from 975 to 1400 K using solid-state cells with (Y2O3) ZrO2 as the electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sr–Ir–O were investigated at 1350 K. The only stable oxide detected along the binary Ir–O was IrO2. Three ternary oxides, SrIrO3, Sr2IrO4 and Sr4IrO6, compositions of which fall on the join SrO–IrO2, were found to be stable. Each of the oxides coexisted with pure metal Ir. Therefore, three working electrodes were prepared consisting of mixtures of Ir+SrO+Sr4IrO6, Ir+Sr4IrO6+Sr2IrO4, and Ir+Sr2IrO4+SrIrO3. These mixtures unambiguously define unique oxygen chemical potentials under isothermal and isobaric conditions. Used for the measurements was a novel apparatus, in which a buffer electrode was introduced between reference and working electrodes to absorb the electrochemical flux of oxygen through the solid electrolyte. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The standard Gibbs energies of formation of the compounds, obtained from the emf of the cells, can be represented by the following equations: View the MathML sourcem View the MathML source View the MathML source where Δf (ox)Go represents the standard Gibbs energy of formation of the ternary compound from its component binary oxides SrO and IrO2. Based on the thermodynamic information, chemical potential diagrams for the system Sr–Ir–O were developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Nd-Pd-O at 1350 K has been established by equilibration of samples representing 13 different compositions and phase identification after quenching by optical and scanning electron microscopy, x-ray diffraction, and energy dispersive analysis of x-rays. The binary oxides PdO and NdO were not stable at 1350 K. Two ternary oxides Nd4PdO7 and Nd2Pd2O5 were identified. Solid and liquid alloys, as well as the intermetallics NdPd3 and NdPd5, were found to be in equilibrium with Nd2O3. Based on the phase relations, three solidstate cells were designed to measure the Gibbs energies of formation of PdO and the two ternary oxides. An advanced version of the solid-state cell incorporating a buffer electrode was used for high-temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MP a as the reference electrode. Electromotive force measurements, conducted from 950 to 1425 K, indicated the presence of a third ternary oxide Nd2PdO4, stable below 1135 (±10) K. Additional cells were designed to study this compound. The standard Gibbs energy of formation of PdO (†f G 0) was measured from 775 to 1125 Kusing two separate cell designs against the primary reference standard for oxygen chemical potential. Based on the thermodynamic information, chemical potential diagrams for the system Nd-Pd-O were also developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Cu-Rh-O at 1273 K has been established by equilibration of samples representing eighteen different compositions, and phase identification after quenching by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). In addition to the binary oxides Cu2O, CuO, and Rh2O3, two ternary oxides CuRhO2 and CuRh2O4 were identified. Both the ternary oxides were in equilibrium with metallic Rh. There was no evidence of the oxide Cu2Rh2O5 reported in the literature. Solid alloys were found to be in equilibrium with Cu2O. Based on the phase relations, two solid-state cells were designed to measure the Gibbs energies of formation of the two ternary oxides. Yttria-stabilized zirconia was used as the solid electrolyte, and an equimolar mixture of Rh+Rh2O3 as the reference electrode. The reference electrode was selected to generate a small electromotive force (emf), and thus minimize polarization of the three-phase electrode. When the driving force for oxygen transport through the solid electrolyte is small, electrochemical flux of oxygen from the high oxygen potential electrode to the low potential electrode is negligible. The measurements were conducted in the temperature range from 900 to 1300 K. The thermodynamic data can be represented by the following equations: {fx741-1} where Δf(ox) G o is the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides. Based on the thermodynamic information, chemical potential diagrams for the system Cu-Rh-O were developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activities of FeCr2O4 in the spinel solid solutions Fe X Mg1−X Cr2O4 (0phase relations in the FeO-MgO-Cr2O3 system have been deduced from the results obtained in this study together with other relevant thermodynamic data from the literature. The tie-lines between the solid solutions with rock salt and spinel structures represent the influence of intercrystalline ion exchange. The tie-lines are skewed toward the FeCr2O4 corner, primarily because of the higher stability of FeCr2O4 compared to MgCr2O4, with respect to their component binary oxides. The oxygen partial pressure corresponding to the two three-phase regions, Fe + Fe X Mg1−X Cr2O4 + Cr2O3 and Fe + Fe Y Mg1−Y O + Fe X Mg1−X Cr2O4, have been evaluated as a function of composition at 1200 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase relations in the system Cu-La-O at 1200 K have been determined by equilibrating samples of different average composition at 1200 K, and phase analysis of quenched samples using optical microscopy, XRD, SEM and EDX. The equilibration experiments were conducted in evacuated ampoules, and under flowing inert gas and pure oxygen. There is only one stable binary oxide La2O3 along the binary La-O, and two oxides Cu2O and CuO along the binary Cu-O. The Cu-La alloys were found to be in equilibrium with La2O3. Two ternary oxides CuLaO2 and CuLa2O4+