861 resultados para Multi-agent simulation and artificial snow optimization
Resumo:
The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.
Resumo:
In this thesis a control system for an intelligent low voltage energy grid is presented, focusing on the control system created by using a multi-agent approach which makes it versatile and easy to expand according to the future needs. The control system is capable of forecasting the future energy consumption and decisions making on its own without human interaction when countering problems. The control system is a part of the St. Petersburg State Polytechnic University’s smart grid project that aims to create a smart grid for the university’s own use. The concept of the smart grid is interesting also for the consumers as it brings new possibilities to control own energy consumption and to save money. Smart grids makes it possible to monitor the energy consumption in real-time and to change own habits to save money. The intelligent grid also brings possibilities to integrate the renewable energy sources to the global or the local energy production much better than the current systems. Consumers can also sell their extra power to the global grid if they want.
Resumo:
In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.
Resumo:
Abstract:Two ultrasound based fertility prediction methods were tested prior to embryo transfer (ET) and artificial insemination (AI) in cattle. Female bovines were submitted to estrous synchronization prior to ET and AI. Animals were scanned immediately before ET and AI procedure to target follicle and corpus luteum (CL) size and vascularity. In addition, inseminated animals were also scanned eleven days after insemination to target CL size and vascularity. All data was compared with fertility by using gestational diagnosis 35 days after ovulation. Prior to ET, CL vascularity showed a positive correlation with fertility, and no pregnancy occurred in animals with less than 40% of CL vascularity. Prior to AI and also eleven days after AI, no relationship with fertility was seen in all parameters analyzed (follicle and CL size and vascularity), and contrary, cows with CL vascularity greater than 70% exhibit lower fertility. In inseminated animals, follicle size and vascularity was positive related with CL size and vascularity, as shown by the presence of greater CL size and vascularity originated from follicle with also greater size and vascularity. This is the first time that ultrasound based fertility prediction methods were tested prior to ET and AI and showed an application in ET, but not in AI programs. Further studies are needed including hormone profile evaluation to improve conclusion.
Resumo:
The report presents the results of the commercialization project called the Container logistic services for forest bioenergy. The project promotes new business that is emerging around overall container logistic services in the bioenergy sector. The results assess the European markets of the container logistics for biomass, enablers for new business creation and required service bundles for the concept. We also demonstrate the customer value of the container logistic services for different market segments. The concept analysis is based on concept mapping, quality function deployment process (QFD) and business network analysis. The business network analysis assesses key shareholders and their mutual connections. The performance of the roadside chipping chain is analysed by the logistic cost simulation, RFID system demonstration and freezing tests. The EU has set the renewable energy target to 20 % in 2020 of which Biomass could account for two-thirds. In the Europe, the production of wood fuels was 132.9 million solid-m3 in 2012 and production of wood chips and particles was 69.0 million solidm3. The wood-based chips and particle flows are suitable for container transportation providing market of 180.6 million loose- m3 which mean 4.5 million container loads per year. The intermodal logistics of trucks and trains are promising for the composite containers because the biomass does not freeze onto the inner surfaces in the unloading situations. The overall service concept includes several packages: container rental, container maintenance, terminal services, RFID-tracking service, and simulation and ERP-integration service. The container rental and maintenance would provide transportation entrepreneurs a way to increase the capacity without high investment costs. The RFID-concept would lead to better work planning improving profitability throughout the logistic chain and simulation supports fuel supply optimization.
Resumo:
The anharmonic, multi-phonon (MP), and Oebye-Waller factor (OW) contributions to the phonon limited resistivity (;0) of metals derived by Shukla and Muller (1979) by the doubletime temperature dependent Green function method have been numerically evaluated for Na and K in the high temperature limit. The anharmonic contributions arise from the cubic and quartic shift of phonons (CS, QS), and phonon width (W) and the interference term (1). The QS, MP and OW contributions to I' are also derived by the matrix element method and the results are in agreement with those of Shukla and Muller (1979). In the high temperature limit, the contributions to;O from each of the above mentioned terms are of the type BT2 For numerical calculations suitable expressions are derived for the anharmonic contributions to ~ in terms of the third and fourth rank tensors obtained by the Ewald procedure. The numerical calculation of the contributions to;O from the OW, MP term and the QS have been done exactly and from the CS, Wand I terms only approximately in the partial and total Einstein approximations (PEA, TEA), using a first principle approach (Shukla and Taylor (1976)). The results obtained indicate that there is a strong pairwise cancellation between the: OW and MP terms, the QS and CS and the Wand I terms. The sum total of these contributions to;O for Na and K amounts to 4 to 11% and 2 to 7%, respectively, in the PEA while in the TEA they amount to 3 to 7% and 1 to 4%, respectively, in the temperature range.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de Troyes
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
Diagnosis of Hridroga (cardiac disorders) in Ayurveda requires the combination of many different types of data, including personal details, patient symptoms, patient histories, general examination results, Ashtavidha pareeksha results etc. Computer-assisted decision support systems must be able to combine these data types into a seamless system. Intelligent agents, an approach that has been used chiefly in business applications, is used in medical diagnosis in this case. This paper is about a multi-agent system named “Distributed Ayurvedic Diagnosis and Therapy System for Hridroga using Agents” (DADTSHUA). It describes the architecture of the DADTSHUA model .This system is using mobile agents and ontology for passing data through the network. Due to this, transport delay can be minimized. It is a system which will be very helpful for the beginning physicians to eliminate his ambiguity in diagnosis and therapy. The system is implemented using Java Agent DEvelopment framework (JADE), which is a java-complaint mobile agent platform from TILab.
Resumo:
A study was undertaken to isolate phytase producers from environment and to segregate the most highly efficient phytase producer and to develop a bioprocess technology for commercial application. During this process, a potential phytase producer Bacillus MCCB 242 was isolated and characterized phenotypically and genotypically. Subsequently, phytase production was optimized, the enzyme purified and characterized and an appropriate downstream process also could be standardized.Precisely, through this work an environmental isolate Bacillus MCCB 242 could be brought out as phytase producer for commercial application. The enzyme production could be optimized and characterized, and an appropriate downstream process standardized. Cytotoxicity studies revealed the enzyme safe for feed application, especially in fish.
Resumo:
Many examples for emergent behaviors may be observed in self-organizing physical and biological systems which prove to be robust, stable, and adaptable. Such behaviors are often based on very simple mechanisms and rules, but artificially creating them is a challenging task which does not comply with traditional software engineering. In this article, we propose a hybrid approach by combining strategies from Genetic Programming and agent software engineering, and demonstrate that this approach effectively yields an emergent design for given problems.
Resumo:
Cooperative behaviour of agents within highly dynamic and nondeterministic domains is an active field of research. In particular establishing highly responsive teamwork, where agents are able to react on dynamic changes in the environment while facing unreliable communication and sensory noise, is an open problem. Moreover, modelling such responsive, cooperative behaviour is difficult. In this work, we specify a novel model for cooperative behaviour geared towards highly dynamic domains. In our approach, agents estimate each other’s decision and correct these estimations once they receive contradictory information. We aim at a comprehensive approach for agent teamwork featuring intuitive modelling capabilities for multi-agent activities, abstractions over activities and agents, and a clear operational semantic for the new model. This work encompasses a complete specification of the new language, ALICA.
Resumo:
Mit der vorliegenden Arbeit soll ein Beitrag zu einer (empirisch) gehaltvollen Mikrofundierung des Innovationsgeschehens im Rahmen einer evolutorischen Perspektive geleistet werden. Der verhaltensbezogene Schwerpunkt ist dabei, in unterschiedlichem Ausmaß, auf das Akteurs- und Innovationsmodell von Herbert Simon bzw. der Carnegie-School ausgerichtet und ergänzt, spezifiziert und erweitert dieses unter anderem um vertiefende Befunde der Kreativitäts- und Kognitionsforschung bzw. der Psychologie und der Vertrauensforschung sowie auch der modernen Innovationsforschung. zudem Bezug auf einen gesellschaftlich und ökonomisch relevanten Gegenstandsbereich der Innovation, die Umweltinnovation. Die Arbeit ist sowohl konzeptionell als auch empirisch ausgerichtet, zudem findet die Methode der Computersimulation in Form zweier Multi-Agentensysteme Anwendung. Als zusammenfassendes Ergebnis lässt sich im Allgemeinen festhalten, dass Innovationen als hochprekäre Prozesse anzusehen sind, welche auf einer Verbindung von spezifischen Akteursmerkmalen, Akteurskonstellationen und Umfeldbedingungen beruhen, Iterationsschleifen unterliegen (u.a. durch Lernen, Rückkoppelungen und Aufbau von Vertrauen) und Teil eines umfassenderen Handlungs- sowie (im Falle von Unternehmen) Organisationskontextes sind. Das Akteurshandeln und die Interaktion von Akteuren sind dabei Ausgangspunkt für Emergenzen auf der Meso- und der Makroebene. Die Ergebnisse der Analysen der in dieser Arbeit enthaltenen fünf Fachbeiträge zeigen im Speziellen, dass der Ansatz von Herbert Simon bzw. der Carnegie-School eine geeignete theoretische Grundlage zur Erfassung einer prozessorientierten Mikrofundierung des Gegenstandsbereichs der Innovation darstellt und – bei geeigneter Ergänzung und Adaption an den jeweiligen Erkenntnisgegenstand – eine differenzierte Betrachtung unterschiedlicher Arten von Innovationsprozessen und deren akteursbasierten Grundlagen sowohl auf der individuellen Ebene als auch auf Ebene von Unternehmen ermöglicht. Zudem wird deutlich, dass der Ansatz von Herbert Simon bzw. der Carnegie-School mit dem Initiationsmodell einen zusätzlichen Aspekt in die Diskussion einbringt, welcher bislang wenig Aufmerksamkeit fand, jedoch konstitutiv für eine ökonomische Perspektive ist: die Analyse der Bestimmungsgrößen (und des Prozesses) der Entscheidung zur Innovation. Denn auch wenn das Verständnis der Prozesse bzw. der Determinanten der Erstellung, Umsetzung und Diffusion von Innovationen von grundlegender Bedeutung ist, ist letztendlich die Frage, warum und unter welchen Umständen Akteure sich für Innovationen entscheiden, ein zentraler Kernbereich einer ökonomischen Betrachtung. Die Ergebnisse der Arbeit sind auch für die praktische Wirtschaftspolitik von Bedeutung, insbesondere mit Blick auf Innovationsprozesse und Umweltwirkungen.
Resumo:
All intelligence relies on search --- for example, the search for an intelligent agent's next action. Search is only likely to succeed in resource-bounded agents if they have already been biased towards finding the right answer. In artificial agents, the primary source of bias is engineering. This dissertation describes an approach, Behavior-Oriented Design (BOD) for engineering complex agents. A complex agent is one that must arbitrate between potentially conflicting goals or behaviors. Behavior-oriented design builds on work in behavior-based and hybrid architectures for agents, and the object oriented approach to software engineering. The primary contributions of this dissertation are: 1.The BOD architecture: a modular architecture with each module providing specialized representations to facilitate learning. This includes one pre-specified module and representation for action selection or behavior arbitration. The specialized representation underlying BOD action selection is Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH) reactive plans. 2.The BOD development process: an iterative process that alternately scales the agent's capabilities then optimizes the agent for simplicity, exploiting tradeoffs between the component representations. This ongoing process for controlling complexity not only provides bias for the behaving agent, but also facilitates its maintenance and extendibility. The secondary contributions of this dissertation include two implementations of POSH action selection, a procedure for identifying useful idioms in agent architectures and using them to distribute knowledge across agent paradigms, several examples of applying BOD idioms to established architectures, an analysis and comparison of the attributes and design trends of a large number of agent architectures, a comparison of biological (particularly mammalian) intelligence to artificial agent architectures, a novel model of primate transitive inference, and many other examples of BOD agents and BOD development.