950 resultados para Molecular Spectroscopy
Resumo:
Proteins are specialized molecules that catalyze most of the reactions that can sustain life, and they become functional by folding into a specific 3D structure. Despite their importance, the question, "how do proteins fold?" - first pondered in in the 1930's - is still listed as one of the top unanswered scientific questions as of 2005, according to the journal Science. Answering this question would provide a foundation for understanding protein function and would enable improved drug targeting, efficient biofuel production, and stronger biomaterials. Much of what we currently know about protein folding comes from studies on small, single-domain proteins, which may be quite different from the folding of large, multidomain proteins that predominate the proteomes of all organisms.
In this thesis I will discuss my work to fill this gap in understanding by studying the unfolding and refolding of large, multidomain proteins using the powerful combination of single-molecule force-spectroscopy experiments and molecular dynamic simulations.
The three model proteins studied - Luciferase, Protein S, and Streptavidin - lend insight into the inter-domain dependence for unfolding and the subdomain stabilization of binding ligands, and ultimately provide new insight into atomistic details of the intermediate states along the folding pathway.
Resumo:
This thesis reports on 17O (I = 5/2) and 59Co (I = 7/2) quadrupole central transition (QCT) NMR studies of three classes of biologically important molecules: glucose, nicotinamide and Vitamin B12 derivatives. Extensive QCT NMR experiments were performed over a wide range of molecular motion by changing solvent viscosity and temperature. 17O-labels were introduced at the 5- and 6-positions respectively: D-[5-17O]-glucose and D-[6-17O]-glucose following the literature method. QCT NMR greatly increased the molecular size limit obtained by ordinary solution NMR. It requires much lower temperatures to get the optimal spectral resolution, which are preferable for biological molecules. In addition, quadrupolar product parameter (PQ) and shielding anisotropy product parameter (PSA) were obtained for hydroxide group and amide group for the first time. For conventional NMR studies of quadrupolar nuclei, only PQ is accessible while QCT NMR obtained both PQ and PSA simultaneously. Our experiments also suggest the resolution of QCT NMR can be even better than that obtained by conventional NMR. We observed for the first time that the second-order quadrupolar interaction becomes a dominant relaxation mechanism under ultraslow motion. All these observations suggest that QCT NMR can become a standard technique for studying quadrupolar nuclei in solution.
Resumo:
Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials.
Resumo:
A selected ion flow tube study of the reactions of a series of gas-phase atomic cations (S+, Xe+, O+, Kr+, N+, Ar+ and Ne+) and molecular ions (SF n+ (n = 1-5), CFn+ (n = 1-3), CF2Cl+, H3O+, NO+, N 2O+, CO2+, CO+, and N2+) spanning a large range of recombination energies (6.3-21.6 eV), with acetone, 1,1,1-trifluoroacetone, and hexafluoroacetone has been undertaken with the objective of exploring the nature of the reaction ion chemistry as the methyl groups in acetone are substituted for CF3. The reaction rate coefficients and product ion branching ratios for all 66 reactions, measured at 298 K, are reported. The experimental reaction rate coefficients are compared to theoretically calculated collisional values. Several distinct reaction processes were observed among the large number of reactions studied, including charge transfer (non-dissociative and dissociative), abstraction, ion-molecule associations and, in the case of the reactions involving the reagent ion H3O+, proton transfer.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Light is the main information about the interstellar medium accessible on Earth. Based on this information one can conclude on the composition of the region where the light originates from, as well as on its history. The requirement for this is that it is possible to identify the different absorption and emission features in the spectrum and assign them to certain molecules, atoms or ions. To enable the identification of the different species, precise spectroscopic investigations of the species in the laboratory are necessary. In this work a new spectroscopic method is presented, which can be used to record pure rotational spectra of mass selected, cold, stored molecular ions. It is based on the idea of state specific attachment of helium atoms to the stored molecular ions. The new technique has been made possible through the development and recent completion of two new 22-pole ion trap instruments in the work group of Laboratory Astrophysics at the University of Cologne. These new instruments have the advantage to reach temperatures as low as 4K compared to the 10K of the predecessor instrument. These low temperatures enable the ternary attachment of helium atoms to the stored molecular ions and by this make it possible to develop this new method for pure rotational spectroscopy. According to this, this work is divided into two parts. The first part deals with the new FELion experiment that was build and characterized in the first part of the thesis. FELion is a cryogenic 22-pole ion trap apparatus, allowing to generate, mass select, store and cool down, and analyze molecular ions. The different components of the instrument, e.g. the Storage Ion Source for generating the ions or the first quadrupole mass filter, are described and characterized in this part. Besides this also the newly developed control and data acquisitions system is introduced. With this instrument the measurements presented in the second part of the work were performed. The second part deals with the new action spectroscopic method of state-selective helium attachment to the stored molecular ions. For a deeper analysis of the new technique the systems of CD+ and helium and HCO+ and helium are investigated in detail. Analytical and numerical models of the process are presented and compared to experimental results. The results of these investigations point to a seemingly very general applicability of the new method to a wide class of molecular ions. In the final part of the thesis measurements of the rotational spectrum of l-C3H+ are presented. These measurements have to be high-lighted, since it was possible for the first time in the laboratory to unambiguously measure four low-lying rotational transitions of l-C3H+. These measurements (Brünken et al. ApJL 783, L4 (2014)) enabled the reliable identification of so far unidentified emision lines observed in several regions of the interstellar medium (Pety et al. Astron. Astrophys. 548, A68 (2012), McGuire et al. The Astrophysical Journal 774, 56 (2013) and McGuire et al. The Astrophysical Journal 783, 36 (2014)).
Resumo:
The protein folding problem has been one of the most challenging subjects in biological physics due to its complexity. Energy landscape theory based on statistical mechanics provides a thermodynamic interpretation of the protein folding process. We have been working to answer fundamental questions about protein-protein and protein-water interactions, which are very important for describing the energy landscape surface of proteins correctly. At first, we present a new method for computing protein-protein interaction potentials of solvated proteins directly from SAXS data. An ensemble of proteins was modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the global X-ray scattering of the whole model ensemble was computed at each snapshot of the simulation. The interaction potential model was optimized and iterated by a Levenberg-Marquardt algorithm. Secondly, we report that terahertz spectroscopy directly probes hydration dynamics around proteins and determines the size of the dynamical hydration shell. We also present the sequence and pH-dependence of the hydration shell and the effect of the hydrophobicity. On the other hand, kinetic terahertz absorption (KITA) spectroscopy is introduced to study the refolding kinetics of ubiquitin and its mutants. KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and circular dichroism results. We propose that KITA monitors the rearrangement of hydrogen bonding during secondary structure formation. Finally, we present development of the automated single molecule operating system (ASMOS) for a high throughput single molecule detector, which levitates a single protein molecule in a 10 µm diameter droplet by the laser guidance. I also have performed supporting calculations and simulations with my own program codes.
Resumo:
As fluoroquinolonas são antibióticos que têm um largo espectro de ação contra bactérias, especialmente Gram-negativas. O seu mecanismo de ação assenta na inibição de enzimas responsáveis pela replicação do DNA. Porém, devido ao seu uso indevido, o surgimento de resistência bacteriana a estes antibióticos tem-se tornado um grave problema de saúde pública. Uma vez que os seus alvos de ação se situam no meio intracelular, a redução da permeabilidade da membrana externa de bactérias Gram-negativas constitui um dos mecanismos de resistência mais conhecidos. Esta redução é associada à baixa expressão ou mutações em porinas necessárias para permitir o seu transporte, mais concretamente, da OmpF. Estudos prévios demonstraram que a coordenação de fluoroquinolonas com iões metálicos divalentes e 1,10-fenantrolina (genericamente designados metaloantibióticos) são potenciais candidatos como alternativa às fluoroquinolonas convencionais. Estes metaloantibióticos exibem um efeito antimicrobiano comparável ou superior à fluoroquinolona na forma livre, mas parecem ter uma via de translocação diferente, independente de porinas. Estas diferenças no mecanismo de captura podem ser fundamentais para contornar a resistência bacteriana. De forma a compreender o papel dos lípidos no mecanismo de entrada dos metaloantibióticos, estudou-se a interação e localização dos metaloantibióticos da Ciprofloxacina (2ª geração), da Levofloxacina (3ª geração) e Moxifloxacina (4ª geração) com um modelo de membranas de Escherichia coli desprovido de porinas. Estes estudos foram realizados através de técnicas de espectroscopia de fluorescência, por medições em modo estacionário e resolvida no tempo. Os coeficientes de partição determinados demonstraram uma interação mais elevada dos metaloantibióticos relativamente às respetivas fluoroquinolonas na forma livre, um facto que está diretamente relacionado com as espécies existentes em solução a pH fisiológico. Os estudos de localização mostraram que estes metaloantibióticos devem estar inseridos na membrana bacteriana, confirmando a sua entrada independente de porinas. Este mecanismo de entrada, pela via hidrofóbica, é potenciado por interações eletrostáticas entre as espécies catiónicas de metaloantibiótico que existem a pH 7,4 e os grupos carregados negativamente dos fosfolípidos da membrana. Desta forma, os resultados obtidos neste estudo sugerem que a via de entrada dos metaloantibióticos e das respetivas fluoroquinolonas deve ser diferente. Os metaloantibióticos são candidatos adequados para a realização de mais testes laboratoriais e uma alternativa promissora para substituir as fluoroquinolonas convencionais, uma vez que parecem ultrapassar um dos principais mecanismos de resistência bacteriana a esta classe de antibióticos.
Resumo:
Enzyme immobilisation is the conversion of a soluble enzyme molecule into a solid particle form. This allows the recovery of the enzyme catalyst for its re-use and avoids protein contamination of the product streams. A better understanding of immobilised enzymes is necessary for their rational development. A more rational design can help enormously in the applicability of these systems in different areas, from biosensors to chemical industry. Immobilised enzymes are challenging systems to study and very little information is given by conventional biochemical analysis such as catalytic activity and amount of protein. Here, solid-state NMR has been applied as the main technique to study these systems and evaluate them more precisely. Various approaches are presented for a better understanding of immobilised enzymes, which is the aim of this thesis. Firstly, the requirements of a model system of study will be discussed. The selected systems will be comprehensibly characterised by a variety of techniques but mainly by solid-state NMR. The chosen system will essentially be the enzyme α-chymotrypsin covalently immobilised on two functionalised inorganic supports – epoxide silica and epoxide alumina – and an organic support – Eupergit®. The study of interactions of immobilised enzymes with other species is vital for understanding the macromolecular function and for predicting and engineering protein behaviour. The study of water, ions and inhibitors interacting with various immobilised enzyme systems is covered here. The interactions of water and sodium ions were studied by 17O and 23Na multiple-quantum techniques, respectively. Various pore sizes of the supports were studied for the immobilised enzyme in the presence of labelled water and sodium cations. Finally, interactions between two fluorinated inhibitors and the active site of the enzyme will be explored using 19F NMR, offering a unique approach to evaluate catalytic behaviour. These interactions will be explored by solution-state NMR firstly, then by solid-state NMR. NMR has the potential to give information about the state of the protein in the solid support, but the precise molecular interpretation is a difficult task.
Resumo:
Nanocrystalline samples of Ba1-xCaxF2 prepared by high-energy milling show an unusually high F-ion conductivity, which exhibit a maximum in the magnitude and a minimum in the activation energy at x = 0.5. Here, we report an X-ray absorption spectroscopy (XAS) at the Ca and Sr K edges and the Ba L-3 edge and a molecular dynamics (MD) simulation study of the pure and mixed fluorides. The XAS measurements on the pure binary fluorides, CaF2, SrF2 and BaF2 show that high-energy ball-milling produces very little amorphous material, in contrast to the results for ball milled oxides. XAS measurements of Ba1-xCaxF2 reveal that for 0 < x < 1 there is considerable disorder in the local environments of the cations which is highest for x = 0.5. Hence the maximum in the conductivity corresponds to the composition with the maximum level of local disorder. The MD calculations also show a highly disordered structure consistent with the XAS results and similarly showing maximum disorder at x = 0.5.
Resumo:
Dendrimers of various generations were synthesized by the divergent method. Starting from various amine cores (G(0a), G(0b), G(0c)) the generations were built by reaction of the amine with acrylnitrile followed by hydrogenation with DIBAL-H. Treatment with salicylaldehyde creates a fivefold coordination sphere for iron in the molecular periphery. The resulting multinuclear coordination compounds are investigated by Mossbauer spectroscopy.
Resumo:
High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials. © 2015, The Author(s).
Resumo:
Este trabalho descreve o isolamento e purificação do ácido α-eleosteárico (α-ESA) a partir do óleo de tungue e sua caracterização por espectroscopia de infravermelho com transformada de Fourier (FTIR), cromatografia gasosa acoplada com espectrometria de massas (GC-MS) e espectroscopia de ressonância magnética nuclear (RMN) de 1H e 13C. O α-ESA apresenta atividades biológicas (antitumorais, anti-inflamatórias e antioxidantes), tornando-se importante compreender sua interação com membranas lipídicas. Assim, este trabalho também descreve resultados referentes ao efeito da incorporação de α-ESA na dinâmica molecular de lipossomos compostos por fosfatidilcolina. O sistema lipossomal puro e contendo α-ESA foi caracterizado através do uso de espectroscopia de UV-visível, FTIR, RMN e calorimetria de varredura diferencial (DSC). Como resultados da purificação do α-ESA, obtivemos uma pureza de 95,9% utilizando acetona como solvente de recristalização em detrimento dos 92,2% em solução etanólica. Na incorporação em lipossomos, observou-se uma maior interação do α-ESA com a parte polar, de interface e os primeiros metilenos da região apolar da fosfatidilcolina. Além disso, α-ESA apresentou um efeito de redução da fluidez de lipossomos. Os resultados contribuem para a geração de conhecimento para o desenvolvimento de novos sistemas farmacológicos.
Resumo:
The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job's plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.