940 resultados para Molecular Simulation
Resumo:
Recent management research has evidenced the significance of organizational social networks, and communication is believed to impact the interpersonal relationships. However, we have little knowledge on how communication affects organizational social networks. This paper studies the dynamics between organizational communication patterns and the growth of organizational social networks. We propose an organizational social network growth model, and then collect empirical data to test model validity. The simulation results agree well with the empirical data. The results of simulation experiments enrich our knowledge on communication with the findings that organizational management practices that discourage employees from communicating within and across group boundaries have disparate and significant negative effect on the social network’s density, scalar assortativity and discrete assortativity, each of which correlates with the organization’s performance. These findings also suggest concrete measures for management to construct and develop the organizational social network.
Resumo:
Background: Foot ulcers are a frequent reason for diabetes-related hospitalisation. Clinical training is known to have a beneficial impact on foot ulcer outcomes. Clinical training using simulation techniques has rarely been used in the management of diabetes-related foot complications or chronic wounds. Simulation can be defined as a device or environment that attempts to replicate the real world. The few non-web-based foot-related simulation courses have focused solely on training for a single skill or “part task” (for example, practicing ingrown toenail procedures on models). This pilot study aimed to primarily investigate the effect of a training program using multiple methods of simulation on participants’ clinical confidence in the management of foot ulcers. Methods: Sixteen podiatrists participated in a two-day Foot Ulcer Simulation Training (FUST) course. The course included pre-requisite web-based learning modules, practicing individual foot ulcer management part tasks (for example, debriding a model foot ulcer), and participating in replicated clinical consultation scenarios (for example, treating a standardised patient (actor) with a model foot ulcer). The primary outcome measure of the course was participants’ pre- and post completion of confidence surveys, using a five-point Likert scale (1 = Unacceptable-5 = Proficient). Participants’ knowledge, satisfaction and their perception of the relevance and fidelity (realism) of a range of course elements were also investigated. Parametric statistics were used to analyse the data. Pearson’s r was used for correlation, ANOVA for testing the differences between groups, and a paired-sample t-test to determine the significance between pre- and post-workshop scores. A minimum significance level of p < 0.05 was used. Results: An overall 42% improvement in clinical confidence was observed following completion of FUST (mean scores 3.10 compared to 4.40, p < 0.05). The lack of an overall significant change in knowledge scores reflected the participant populations’ high baseline knowledge and pre-requisite completion of web-based modules. Satisfaction, relevance and fidelity of all course elements were rated highly. Conclusions: This pilot study suggests simulation training programs can improve participants’ clinical confidence in the management of foot ulcers. The approach has the potential to enhance clinical training in diabetes-related foot complications and chronic wounds in general.
Resumo:
Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers of motor vehicles exhibit safe behaviours. Several car-following models are used in various micro-simulation models. This research compares the mainstream car following models’ capabilities of emulating precise driver behaviour parameters such as headways and Time to Collisions. The comparison firstly illustrates which model is more robust in the metric reproduction. Secondly, the study conducted a series of sensitivity tests to further explore the behaviour of each model. Based on the outcome of these two steps exploration of the models, a modified structure and parameters adjustment for each car-following model is proposed to simulate more realistic vehicle movements, particularly headways and Time to Collision, below a certain critical threshold. NGSIM vehicle trajectory data is used to evaluate the modified models performance to assess critical safety events within traffic flow. The simulation tests outcomes indicate that the proposed modified models produce better frequency of critical Time to Collision than the generic models, while the improvement on the headway is not significant. The outcome of this paper facilitates traffic safety assessment using microscopic simulation.
Resumo:
Nano silicon is widely used as the essential element of complementary metal–oxide–semiconductor (CMOS) and solar cells. It is recognized that today, large portion of world economy is built on electronics products and related services. Due to the accessible fossil fuel running out quickly, there are increasing numbers of researches on the nano silicon solar cells. The further improvement of higher performance nano silicon components requires characterizing the material properties of nano silicon. Specially, when the manufacturing process scales down to the nano level, the advanced components become more and more sensitive to the various defects induced by the manufacturing process. It is known that defects in mono-crystalline silicon have significant influence on its properties under nanoindentation. However, the cost involved in the practical nanoindentation as well as the complexity of preparing the specimen with controlled defects slow down the further research on mechanical characterization of defected silicon by experiment. Therefore, in current study, the molecular dynamics (MD) simulations are employed to investigate the mono-crystalline silicon properties with different pre-existing defects, especially cavities, under nanoindentation. Parametric studies including specimen size and loading rate, are firstly conducted to optimize computational efficiency. The optimized testing parameters are utilized for all simulation in defects study. Based on the validated model, different pre-existing defects are introduced to the silicon substrate, and then a group of nanoindentation simulations of these defected substrates are carried out. The simulation results are carefully investigated and compared with the perfect Silicon substrate which used as benchmark. It is found that pre-existing cavities in the silicon substrate obviously influence the mechanical properties. Furthermore, pre-existing cavities can absorb part of the strain energy during loading, and then release during unloading, which possibly causes less plastic deformation to the substrate. However, when the pre-existing cavities is close enough to the deformation zone or big enough to exceed the bearable stress of the crystal structure around the spherical cavity, the larger plastic deformation occurs which leads the collapse of the structure. Meanwhile, the influence exerted on the mechanical properties of silicon substrate depends on the location and size of the cavity. Substrate with larger cavity size or closer cavity position to the top surface, usually exhibits larger reduction on Young’s modulus and hardness.
Resumo:
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1=n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal. Funding source Cancer Australia (Department of Health and Ageing) Research Grant 614217
Resumo:
A simulation-based training system for surgical wound debridement was developed and comprises a multimedia introduction, a surgical simulator (tutorial component), and an assessment component. The simulator includes two PCs, a haptic device, and mirrored display. Debridement is performed on a virtual leg model with a shallow laceration wound superimposed. Trainees are instructed to remove debris with forceps, scrub with a brush, and rinse with saline solution to maintain sterility. Research and development issues currently under investigation include tissue deformation models using mass-spring system and finite element methods; tissue cutting using a high-resolution volumetric mesh and dynamic topology; and accurate collision detection, cutting, and soft-body haptic rendering for two devices within the same haptic space.
Resumo:
Molecular dynamics simulations were carried out on single chain models of linear low-density polyethylene in vacuum to study the effects of branch length, branch content, and branch distribution on the polymer’s crystalline structure at 300 K. The trans/gauche (t/g) ratios of the backbones of the modeled molecules were calculated and utilized to characterize their degree of crystallinity. The results show that the t/g ratio decreases with increasing branch content regardless of branch length and branch distribution, indicating that branch content is the key molecular parameter that controls the degree of crystallinity. Although t/g ratios of the models with the same branch content vary, they are of secondary importance. However, our data suggests that branch distribution (regular or random) has a significant effect on the degree of crystallinity for models containing 10 hexyl branches/1,000 backbone carbons. The fractions of branches that resided in the equilibrium crystalline structures of the models were also calculated. On average, 9.8% and 2.5% of the branches were found in the crystallites of the molecules with ethyl and hexyl branches while C13 NMR experiments showed that the respective probabilities of branch inclusion for ethyl and hexyl branches are 10% and 6% [Hosoda et al., Polymer 1990, 31, 1999–2005]. However, the degree of branch inclusion seems to be insensitive to the branch content and branch distribution.
A hybrid simulation framework to assess the impact of renewable generators on a distribution network
Resumo:
With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances…). Then again, these decentralized generators (DGs) present opportunities regarding savings on network infrastructure if installed at strategic locations. How can we consider both of these aspects when building decision tools for planning future distribution networks? This paper presents a simulation framework which combines two modeling techniques: agent-based modeling (ABM) and particle swarm optimization (PSO). ABM is used to represent the different system units of the network accurately and dynamically, simulating over short time-periods. PSO is then used to find the most economical configuration of DGs over longer periods of time. The infrastructure of the framework is introduced, presenting the two modeling techniques and their integration. A case study of Townsville, Australia, is then used to illustrate the platform implementation and the outputs of a simulation.
Resumo:
Brief self-report symptom checklists are often used to screen for postconcussional disorder (PCD) and posttraumatic stress disorder (PTSD) and are highly susceptible to symptom exaggeration. This study examined the utility of the five-item Mild Brain Injury Atypical Symptoms Scale (mBIAS) designed for use with the Neurobehavioral Symptom Inventory (NSI) and the PTSD Checklist–Civilian (PCL–C). Participants were 85 Australian undergraduate students who completed a battery of self-report measures under one of three experimental conditions: control (i.e., honest responding, n = 24), feign PCD (n = 29), and feign PTSD (n = 32). Measures were the mBIAS, NSI, PCL–C, Minnesota Multiphasic Personality Inventory–2, Restructured Form (MMPI–2–RF), and the Structured Inventory of Malingered Symptomatology (SIMS). Participants instructed to feign PTSD and PCD had significantly higher scores on the mBIAS, NSI, PCL–C, and MMPI–2–RF than did controls. Few differences were found between the feign PCD and feign PTSD groups, with the exception of scores on the NSI (feign PCD > feign PTSD) and PCL–C (feign PTSD > feign PCD). Optimal cutoff scores on the mBIAS of ≥8 and ≥6 were found to reflect “probable exaggeration” (sensitivity = .34; specificity = 1.0; positive predictive power, PPP = 1.0; negative predictive power, NPP = .74) and “possible exaggeration” (sensitivity = .72; specificity = .88; PPP = .76; NPP = .85), respectively. Findings provide preliminary support for the use of the mBIAS as a tool to detect symptom exaggeration when administering the NSI and PCL–C.
Resumo:
A numerical simulation method for the Red Blood Cells’ (RBC) deformation is presented in this study. The two-dimensional RBC membrane is modeled by the spring network, where the elastic stretch/compression energy and the bending energy are considered with the constraint of constant RBC surface area. Smoothed Particle Hydrodynamics (SPH) method is used to solve the Navier-Stokes equation coupled with the Plasma-RBC membrane and Cytoplasm- RBC membrane interaction. To verify the method, the motion of a single RBC is simulated in Poiseuille flow and compared with the results reported earlier. Typical motion and deformation mechanism of the RBC is observed.
Resumo:
The micro-circulation of blood plays an important role in human body by providing oxygen and nutrients to the cells and removing carbon dioxide and wastes from the cells. This process is greatly affected by the rheological properties of the Red Blood Cells (RBCs). Changes in the rheological properties of the RBCs are caused by certain human diseases such as malaria and sickle cell diseases. Therefore it is important to understand the motion and deformation mechanism of RBCs in order to diagnose and treat this kind of diseases. Although, many methods have been developed to explore the behavior of the RBCs in micro-channels, they could not explain the deformation mechanism of the RBCs properly. Recently developed Particle Methods are employed to explain the RBCs’ behavior in micro-channels more comprehensively. The main objective of this study is to critically analyze the present methods, used to model the RBC behavior in micro-channels, in order to develop a computationally efficient particle based model to describe the complete behavior of the RBCs in micro-channels accurately and comprehensively
Resumo:
To fumigate grain stored in a silo, phosphine gas is distributed by a combination of diffusion and fan-forced advection. This initial study of the problem mainly focuses on the advection, numerically modelled as fluid flow in a porous medium. We find satisfactory agreement between the flow predictions of two Computational Fluid Dynamics packages, Comsol and Fluent. The flow predictions demonstrate that the highest velocity (>0.1 m/s) occurs less than 0.2m from the inlet and reduces drastically over one metre of silo height, with the flow elsewhere less than 0.002 m/s or 1% of the velocity injection. The flow predictions are examined to identify silo regions where phosphine dosage levels are likely to be too low for effective grain fumigation.
Resumo:
Numerical study is carried out using large eddy simulation to study the heat and toxic gases released from fires in real road tunnels. Due to disasters about tunnel fires in previous decade, it attracts increasing attention of researchers to create safe and reliable ventilation designs. In this research, a real tunnel with 10 MW fire (which approximately equals to the heat output speed of a burning bus) at the middle of tunnel is simulated using FDS (Fire Dynamic Simulator) for different ventilation velocities. Carbone monoxide concentration and temperature vertical profiles are shown for various locations to explore the flow field. It is found that, with the increase of the longitudinal ventilation velocity, the vertical profile gradients of CO concentration and smoke temperature were shown to be both reduced. However, a relatively large longitudinal ventilation velocity leads to a high similarity between the vertical profile of CO volume concentration and that of temperature rise.
Resumo:
Noradrenaline which occurs naturally in the body binds to beta-adrenoceptors on the heart, causing the heart to beat faster and with greater force in response to increased demand. This enables the heart to provide oxygenated blood to vital organs. Prolonged overstimulation by noradrenaline can be harmful to the heart and lead to the progression of heart disease. In these circumstances beta-adrenoceptors are blocked with drugs called beta-blockers. Beta-blockers block the effects of noradrenaline by binding to the same site on the beta-adrenoceptor. Some beta-blockers such as CGP12177 can also cause increases in heart rate. Therefore it was proposed that CGP12177 could bind in a different place to noradrenaline. The aim of this study was to determine where CGP12177 binds to on the beta-adrenoceptor. The results have revealed a separate binding site named beta-1-low. These results may lead to the development of improved -blockers for the management of heart conditions.