908 resultados para Molecular, Cellular, and Tissue Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have cloned and studied the expression in Escherichia coli K-12 of chromosomal rfb genes determining the biosynthesis of the O7 lipopolysaccharide (LPS) antigen from E. coli K1 strain VW187. Two E. coli K-12 strains carrying recombinant cosmids gave positive coagglutination reactions with protein A-rich staphylococcal particles bearing an O7-specific rabbit polyclonal antiserum. Silver-stained polyacrylamide gels of total membranes extracted with hot phenol showed O side chain material which had O7 specificity as determined by immunoblotting experiments. However, the amount of O7 LPS expressed in E. coli K-12 was considerably lower than that produced by the wild-type strain VW187. Deletion and transposition experiments identified a region of about 17 kilobase pairs which is essential for the expression of O7 LPS. The existence of homologies between the O7 LPS genes and other E. coli O side chain genes was investigated by Southern blot hybridization experiments. An O7-specific probe fragment of 15 kilobase pairs did not hybridize to genomic DNA digests of E. coli strains belonging to several different O types, demonstrating that the O7 LPS genes are unique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose: The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. 

Experimental Approach: KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. 

Key Results: KCNQ subtypes 1-5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20M) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. 

Conclusions and Implications: These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Au nanoparticles (AuNPs) have attracted a great interest in fabrication of various biosensor systems for analysis of cellular and biomolecular recognitions. In conjunction with vast conjugation chemistry available, the materials are easily coupled with biomolecules such as nucleic acids, antigens or antibodies in order to achieve their many potential applications as ligand carriers or transducing platforms for preparation, detection and quantification purposes. Furthermore, the nanoparticles possess easily tuned and unique optical/ physical/ chemical characteristics, and high surface areas, making them ideal candidates to this end. In this topic, sensing mechanisms based on localized surface plasmon resonance (LSPR), particle aggregation, catalytic property, and Fluorescence Resonance Energy Transfer (FRET) of AuNPs as well as barcoding technologies including DNA biobarcodes will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MOLECULES that perform logic operations are prerequisites for molecular information processing and computation. We and others have previously reported receptor molecules that can be considered to perform simple logic operations by coupling ionic bonding or more complex molecular-recognition processes with photonic (fluorescence) signals: in these systems, chemical binding (the 'input') results in a change in fluorescence intensity (the 'output') from the receptor. Here we describe a receptor (molecule (1) in Fig. 1) that operates as a logic device with two input channels: the fluorescence signal depends on whether the molecule binds hydrogen ions, sodium ions or both. The input/output characteristics of this molecular device correspond to those of an AND gate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-invasive population genetics has become a valuable tool in ecology and conservation biology, allowing genetic studies of wild populations without the need to catch, handle or even observe the study subjects directly. We address some of the concerns regarding the limitations of using non-invasive samples by comparing the quality of population genetic information gained through DNA extracted from faecal samples and biopsy samples of two elusive bat species, Myotis mystacinus and Myotis nattereri. We demonstrate that DNA extracted from faeces and tissue samples gives comparable results for frequency based population genetic analyses, despite the occurrence of genotyping errors when using faecal DNA. We conclude that non-invasive genetic sampling for population genetic analysis in bats is viable, and although more labour-intensive and expensive, it is an alternative to tissue sampling, which is particularly pertinent when specimens are rare, endangered or difficult to capture. © 2012 Museum and Institute of Zoology PAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique feature ofmitochondrial complex I is the so-called A/D transition (active-deactive transition). The A-form catalyses rapid oxidation of NADH by ubiquinone (k ~10 min) and spontaneously converts into the D-form if the enzyme is idle at physiological temperatures. Such deactivation occurs in vitro in the absence of substrates or in vivo during ischaemia, when the ubiquinone pool is reduced. The D-form can undergo reactivation given both NADH and ubiquinone availability during slow (k ~1-10 min) catalytic turnover(s). We examined known conformational differences between the two forms and suggested a mechanism exerting A/D transition of the enzyme. In addition, we discuss the physiological role of maintaining the enzyme in the D-form during the ischaemic period. Accumulation of the D-form of the enzyme would prevent reverse electron transfer from ubiquinol to FMN which could lead to superoxide anion generation. Deactivation would also decrease the initial burst of respiration after oxygen reintroduction. Therefore the A/D transition could be an intrinsic protective mechanism for lessening oxidative damage during the early phase of reoxygenation. Exposure of Cys of mitochondrially encoded subunit ND3 makes the Dform susceptible for modification by reactive oxygen species and nitric oxide metabolites which arrests the reactivation of the D-form and inhibits the enzyme. The nature of thiol modification defines deactivation reversibility, the reactivation timescale, the status of mitochondrial bioenergetics and therefore the degree of recovery of the ischaemic tissues after reoxygenation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasound has long been recognized as a means of effecting change at the cellular and tissue levels [1-3], which may be enhanced in the presence of photosensitive agents [4-6]. During insonation, the presence of bubbles can also play a role, creating strong microstreaming effects in solution and in more dramatic circumstances leading to the formation of energetic microjets [7], plasmas [8], and the production of other highly reactive species [9]. Such sonodynamic activity has generated particular excitement in the medical community as it Moreover the dual role for microbubbles as both an adjunct to therapy and a diagnostic echogenicity enhancer has seen industry take a proactive role in their development. In the present paper we studied the role of ultrasound driven sonoluminescent light on the degradation of a fluorescent test species (rhodamine) in the presence of an archetypal photocatalyst material, TiO 2, with a view to exploring its exploitation potential for downstream medical applications. We found that, whilst the efficiency of this process is seen to be low compared with conventional ultra-violet sources, we advocate the further exploration of the sonoluminescent approach given its potential for non-invasive applications. A strategy for enhancing the effect is also suggested.