981 resultados para Mixture modelling
Resumo:
A transformation is suggested which can transform a non-Gaussian monthly hydrological time series into a Gaussian one. The suggested approach is verified with data of ten Indian rainfall time series. Incidentally, it is observed that once the deterministic trends are removed, the transformation leads to an uncorrelated process for monthly rainfall. The procedure for normalization is general enough in that it should be also applicable to river discharges. This is verified to a limited extent by considering data of two Indian river discharges.
Resumo:
Glyphosate resistance is a rapidly developing threat to profitability in Australian cotton farming. Resistance causes an immediate reduction in the effectiveness of in-crop weed control in glyphosate-resistant transgenic cotton and summer fallows. Although strategies for delaying glyphosate resistance and those for managing resistant populations are qualitatively similar, the longer resistance can be delayed, the longer cotton growers will have choice over which tactics to apply and when to apply them. Effective strategies to avoid, delay, and manage resistance are thus of substantial value. We used a model of glyphosate resistance dynamics to perform simulations of resistance evolution in Sonchus oleraceus (common sowthistle) and Echinochloa colona (awnless barnyard grass) under a range of resistance prevention, delaying, and management strategies. From these simulations, we identified several elements that could contribute to effective glyphosate resistance prevention and management strategies. (i) Controlling glyphosate survivors is the most robust approach to delaying or preventing resistance. High-efficacy, high-frequency survivor control almost doubled the useful lifespan of glyphosate from 13 to 25 years even with glyphosate alone used in summer fallows. (ii) Two non-glyphosate tactics in-crop plus two in-summer fallows is the minimum intervention required for long-term delays in resistance evolution. (iii) Pre-emergence herbicides are important, but should be backed up with non-glyphosate knockdowns and strategic tillage; replacing a late-season, pre-emergence herbicide with inter-row tillage was predicted to delay glyphosate resistance by 4 years in awnless barnyard grass. (iv) Weed species' ecological characteristics, particularly seed bank dynamics, have an impact on the effectiveness of resistance strategies; S. oleraceus, because of its propensity to emerge year-round, was less exposed to selection with glyphosate than E. colona, resulting in an extra 5 years of glyphosate usefulness (18 v. 13 years) even in the most rapid cases of resistance evolution. Delaying tactics are thus available that can provide some or many years of continued glyphosate efficacy. If glyphosate-resistant cotton cropping is to remain profitable in Australian farming systems in the long-term, however, growers must adapt to the probability that they will have to deal with summer weeds that are no longer susceptible to glyphosate. Robust resistance management systems will need to include a diversity of weed control options, used appropriately.
Resumo:
A recently developed hanging drop air exposure system for toxicity studies of volatile chemicals was applied to evaluate the cell viability of lung carcinoma A549 cells after 1 h and 24 h of exposure to benzene, toluene, ethylbenzene and xylenes (BTEX) as individual compounds and mixtures of 4 or 6 components. The cellular chemical concentrations causing 50% reduction of cell viability (EC50) were calculated use a mass balance model and came to 17, 12, 11, 9, 4 and 4 mmol/kg cell dry weight for benzene, toluene, ethylbenzene, m-xylene, o-xylene and p-xylene respectively after 1 h of exposure. The EC50 decreased by a factor of four after 24 h of exposure. All mixture effects were best described by the mixture toxicity model of concentration addition, which is valid for chemicals with the same mode of action. Good agreement with the model predictions were found for benzene, toluene, ethylbenzene and m-xylene at four different representative fixed concentration ratios after 1 h of exposure but lower agreement to mixture prediction was obtained after 24 h of exposure. A recreated car exhaust mixture, which involved the contribution of the more toxic p-xylene and o-xylene, yielded an acceptable but lower quality prediction as well.
Resumo:
Concepts of agricultural sustainability and possible roles of simulation modelling for characterising sustainability were explored by conducting, and reflecting on, a sustainability assessment of rain-fed wheat-based systems in the Middle East and North Africa region. We designed a goal-oriented, model-based framework using the cropping systems model Agricultural Production Systems sIMulator (APSIM). For the assessment, valid (rather than true or false) sustainability goals and indicators were identified for the target system. System-specific vagueness was depicted in sustainability polygons-a system property derived from highly quantitative data-and denoted using descriptive quantifiers. Diagnostic evaluations of alternative tillage practices demonstrated the utility of the framework to quantify key bio-physical and chemical constraints to sustainability. Here, we argue that sustainability is a vague, emergent system property of often wicked complexity that arises out of more fundamental elements and processes. A 'wicked concept of sustainability' acknowledges the breadth of the human experience of sustainability, which cannot be internalised in a model. To achieve socially desirable sustainability goals, our model-based approach can inform reflective evaluation processes that connect with the needs and values of agricultural decision-makers. Hence, it can help to frame meaningful discussions, from which actions might emerge.
Resumo:
Climate change and on-going water policy reforms will likely contribute to on-farm and regional structural adjustment in Australia. This paper gathers empirical evidence of farm-level structural adjustments and integrates these with a regional equilibrium model to investigate sectoral and regional impacts of climate change and recent water use policy on rice industry. We find strong evidence of adjustments to the farming system, enabled by existing diversity in on-farm production. A further loss of water with additional pressures to adopt less intensive and larger-scale farming, will however reduce the net number of farm businesses, which may affect regional rice production. The results from a regional CGE model show impacts on the regional economy over and above the direct cost of the environmental water, although a net reduction in real economic output and real income is partially offset by gains in rest of the Australia through the reallocation or resources. There is some interest within the industry and from potential new corporate entrants in the relocation of some rice production to the north. However, strong government support would be crucial to implement such relocation.
Resumo:
Computer simulation modelling is an essential aid in building an integrated understanding of how different factors interact to affect the evolutionary and population dynamics of herbicide resistance, and thus in helping to predict and manage how agricultural systems will be affected. In this review, we first discuss why computer simulation modelling is such an important tool and framework for dealing with herbicide resistance. We then explain what questions related to herbicide resistance have been addressed to date using simulation modelling, and discuss the modelling approaches that have been used, focusing first on the earlier, more general approaches, and then on some newer, more innovative approaches. We then consider how these approaches could be further developed in the future, by drawing on modelling techniques that are already employed in other areas, such as individual-based and spatially explicit modelling approaches, as well as the possibility of better representing genetics, competition and economics, and finally the questions and issues of importance to herbicide resistance research and management that could be addressed using these new approaches are discussed. We conclude that it is necessary to proceed with caution when increasing the complexity of models by adding new details, but, with appropriate care, more detailed models will make it possible to integrate more current knowledge in order better to understand, predict and ultimately manage the evolution of herbicide resistance. © 2014 Society of Chemical Industry.
Resumo:
The family of location and scale mixtures of Gaussians has the ability to generate a number of flexible distributional forms. The family nests as particular cases several important asymmetric distributions like the Generalized Hyperbolic distribution. The Generalized Hyperbolic distribution in turn nests many other well known distributions such as the Normal Inverse Gaussian. In a multivariate setting, an extension of the standard location and scale mixture concept is proposed into a so called multiple scaled framework which has the advantage of allowing different tail and skewness behaviours in each dimension with arbitrary correlation between dimensions. Estimation of the parameters is provided via an EM algorithm and extended to cover the case of mixtures of such multiple scaled distributions for application to clustering. Assessments on simulated and real data confirm the gain in degrees of freedom and flexibility in modelling data of varying tail behaviour and directional shape.
Resumo:
We propose a family of multivariate heavy-tailed distributions that allow variable marginal amounts of tailweight. The originality comes from introducing multidimensional instead of univariate scale variables for the mixture of scaled Gaussian family of distributions. In contrast to most existing approaches, the derived distributions can account for a variety of shapes and have a simple tractable form with a closed-form probability density function whatever the dimension. We examine a number of properties of these distributions and illustrate them in the particular case of Pearson type VII and t tails. For these latter cases, we provide maximum likelihood estimation of the parameters and illustrate their modelling flexibility on simulated and real data clustering examples.
Resumo:
In this paper, we examine approaches to estimate a Bayesian mixture model at both single and multiple time points for a sample of actual and simulated aerosol particle size distribution (PSD) data. For estimation of a mixture model at a single time point, we use Reversible Jump Markov Chain Monte Carlo (RJMCMC) to estimate mixture model parameters including the number of components which is assumed to be unknown. We compare the results of this approach to a commonly used estimation method in the aerosol physics literature. As PSD data is often measured over time, often at small time intervals, we also examine the use of an informative prior for estimation of the mixture parameters which takes into account the correlated nature of the parameters. The Bayesian mixture model offers a promising approach, providing advantages both in estimation and inference.
Resumo:
In order to assess the structural reliability of bridges, an accurate and cost effective Non-Destructive Evaluation (NDE) technology is required to ensure their safe and reliable operation. Over 60% of the Australian National Highway System is prestressed concrete (PSC) bridges according to the Bureau of Transport and Communication Economics (1997). Most of the in-service bridges are more than 30 years old and may experience a heavier traffic load than their original intended level. Use of Ultrasonic waves is continuously increasing for (NDE) and Structural Health Monitoring (SHM) in civil, aerospace, electrical, mechanical applications. Ultrasonic Lamb waves are becoming more popular for NDE because it can propagate long distance and reach hidden regions with less energy loses. The purpose of this study is to numerically quantify prestress force (PSF) of (PSC) beam using the fundamental theory of acoustic-elasticity. A three-dimension finite element modelling approach is set up to perform parametric studies in order to better understand how the lamb wave propagation in PSC beam is affected by changing in the PSF level. Results from acoustic-elastic measurement on prestressed beam are presented, showing the feasibility of the lamb wave for PSF evaluation in PSC bridges.
Resumo:
* Plant response to drought is complex, so that traits adapted to a specific drought type can confer disadvantage in another drought type. Understanding which type(s) of drought to target is of prime importance for crop improvement. * Modelling was used to quantify seasonal drought patterns for a check variety across the Australian wheatbelt, using 123 yr of weather data for representative locations and managements. Two other genotypes were used to simulate the impact of maturity on drought pattern. * Four major environment types summarized the variability in drought pattern over time and space. Severe stress beginning before flowering was common (44% of occurrences), with (24%) or without (20%) relief during grain filling. High variability occurred from year to year, differing with geographical region. With few exceptions, all four environment types occurred in most seasons, for each location, management system and genotype. * Applications of such environment characterization are proposed to assist breeding and research to focus on germplasm, traits and genes of interest for target environments. The method was applied at a continental scale to highly variable environments and could be extended to other crops, to other drought-prone regions around the world, and to quantify potential changes in drought patterns under future climates.
Resumo:
Objective To identify factors associated with critical care nurses’ engagement in end-of-life care practices. Methods Multivariable regression modelling was undertaken on 392 responses to an online self-report survey of end-of-life care practices and factors influencing practice by Australian critical care nurses’. Univariate general linear models were built for six end-of-life care practice areas. Results Six statistically significant (p < 0.001) models were developed: Information sharing F(3, 377) = 40.53, adjusted R2 23.8%; Environmental modification F(5, 380) = 19.55, adjusted R2 19.4%; Emotional support F(10, 366) = 12.10, adjusted R2 22.8%; Patient and family centred decision making F(8, 362) = 17.61 adjusted R2 26.4%; Symptom management F(8, 376) = 7.10, adjusted R2 11.3%; and Spiritual support F(9, 367) = 14.66, adjusted R2 24.6%. Stronger agreement with values consistent with a palliative approach, and greater support for patient and family preferences were associated with higher levels of engagement in end-of-life care practices. Higher levels of preparedness and access to opportunities for knowledge acquisition were associated with engagement in the interpersonal practices of patient and family centred decision making and emotional support. Conclusion This study provides evidence for interventions to address factors associated with nurse engagement to increase participation in all end-of-life care practice areas.